Кабу лайк процессоры. Процессоры Intel Kaby Lake для настольных ПК. ⇡#Новые возможности Intel QuickSync

На днях, компания Intel анонсировала скорый выход 7-ого поколения своих процессоров, таким образом, поставив точку «тик-так» стратегии применявшейся компанией на протяжении многих лет. Напомним, что «тик-так» стратегия подразумевала под собой следующее: с циклом «тик» Intel выпускал процессоры с уменьшением технологического процесса их производства, тогда как в цикле «так» происходила полная модернизация процессорной микроархитекторы, но сам технологический процесс практически оставался прежним. К примеру, «интеловское» 5-е поколение процессоров Broadwell разрабатывалась в цикле «тик», тогда как следующая, 6-я серия, Skylake – это уже был цикл «так». На этот раз, Intel по своей логике должен был выпустить процессор цикла «тик», и все к этой шло. Компания планировала, что после Skylake будет выпускаться Cannonlake, процессор с уменьшенным до 10-нм технологическим процессом. Однако, всевозможные задержки и проблемы с разработкой новинки, вынудили Intel явить публике еще один процессор цикла «так», названный Kaby Lake, использующий все тот же 14-нм технологический процесс, что и его предшественник, но с некоторыми оптимизациями, добавляющими ему производительности в сравнении со Skylake.

В этой заметке, мы расскажем о главных отличительных и сходных чертах между Intel Kaby Lake и Skylake процессорами. Сразу заметим, что наиболее привлекательными Kaby Lake процессоры должны выглядеть для тех, кто много создает/потребляет 4К контент.

Intel Kaby Lake: Процессоры Готовые к 4К

Одна из ключевых привлекательностей Kaby Lake кроется в поддержке HEVC кодирования и декодирования 4К видео. Процессоры 7-го поколения Intel, теперь перепоручают данную работу непосредственно графической карте, и не задействуют, как это было раньше, свои собственные ядра, тем самым качество потока 4К видео заметно улучшается, и в тоже время заметно снижается расход аккумуляторной батареи. Более того, не отягощенный работой с 4К видео процессор, может направить свои силы на выполнение других задач стоящих в очереди. При этом ядра не только не подвергаются большей нагрузке, но и расходуют меньше энергии, именно поэтому в Intel заявляют, что системы, работающие под управлением процессоров Kaby Lake, в 2,6 раз эффективней используют заряд батареи по сравнению с другими системами, при работе с 4К видео.

Пользователи, также, заметят значительные улучшения в работе с 3D графикой при использовании Kaby Lake, в сравнении с предыдущими «интеловскими» поколениями, что напрямую говорит об улучшении игрового процесса. В Intel даже решили показать Dell XPS 13 с процессором Kaby Lake, который работая на средних настройках смог выдавать около 30 fps.

Kaby Lake vs Skylake: Сравнение — Что Лучше

Kaby Lake или Skylake: Более Быстрая Смена Тактовой Частоты

Применительно к Kaby Lake, в Intel взяли всю туже архитектуру, использовавшуюся в Skylake, и применили к ней улучшения: повысили тактовую частоту и улучшили турбо режим. Пока нельзя говорить достоверно, что данные новшества как-либо значительно улучшат производительность процессора (хотя, по существу, должны), однако результаты бенчмарков показанные Intel выглядят многообещающими. Учитывая, что при создании Kaby Lake не применялась новая архитектура, все новшества и улучшения процессора по сравнению со Sky Lake, касаются изменений самого «железа».
Среди этих новшеств и улучшений, особняком стоит более быстрое переключение между тактовой частотой процессоров Kaby Lake в сравнении с соперниками Skylake. На этом плюсы новинки не заканчиваются: Kaby Lake также получил более высокую базовую тактовую скорость, и большей эффективности в турбо режиме. Для наглядного примера того, на что способны базовые и разогнанные версии процессоров Skylake и Kaby Lake, предлагаем взглянуть на таблицы расположенные ниже:

На Заметку: В 7-ом поколении Intel решила поменять названия моделей процессоров, и если в линейке Skylake у нас были три модели с именами m3, m5 и m7, то Kaby Lake назвала свои модели m3, i5 и i7. Такой подход, может сбить столку обычного покупателя, так как он не будет понимать, что перед ним: либо он приобретает устройство с Core m процессором, либо же девайс оснащен намного более мощным Core i5 или i7. Теперь, чтобы не ввести себя в заблуждение придется пристально обращать внимание на полное название процессора. Модели «m» содержат букву «Y» в своем названии, тогда как у более мощных процессоров вместо нее будет присутствовать буква «U».

Skylake vs Kaby Lake модели «Y»: Сравнение Тактовой Скорости
Skylake Kaby Lake Skylake Kaby Lake Skylake Kaby Lake
Процессор m3-6Y30 m3-7Y30 m5-6Y54 i5-6Y74 m7-6Y75 i7-7Y75
Базовая тактовая скорость 900 MHz 1 GHz (100 MHz прибавка) 1.1 GHz 1.2 GHz (100 MHz прибавка) 1.2 GHz 1.3 GHz (100 MHz прибавка)
Разогнанный режим 2.2 GHz 2.6 GHz (400 MHz прибавка) 2.7 GHz 3.2 GHz (500 MHz прибавка) 3.1 GHz 3.6 GHz (500 MHz прибавка)
Skylake vs Kaby Lake модели «U»: Сравнение Тактовой Скорости
Skylake Kaby Lake Skylake Kaby Lake Skylake Kaby Lake
Процессор i3-6100U i3-7100U i5-6200U i5-7200U i7-6500U i7-7500U
Базовая тактовая скорость 2.3 GHz 2.4 GHz (100 MHz прибавка) 2.3GHz 2.5 GHz (200 MHz прибавка) 2.5 GHz 2.7 GHz (200 MHz прибавка)
Разогнанный режим Неизвестно Неизвестно 2.8 GHz 3.1 GHz (300 MHz прибавка) 3.1 GHz 3.5 GHz (400 MHz прибавка)

Kaby Lake: Поддержка по умолчанию новых форматов

Kaby Lake процессоры также смогут поддерживать 2-е поколение USB 3.1, имеющее пропускную способность в 10 Г/бит в секунду, что в два раза превосходит по скорости используемую ныне версию USB 3.0. Также, 7-е поколение процессоров Intel получит по умолчанию не только поддержку кодирования и декодирования 4К HEVC видео с 10-ти битной глубиной, но и сможет осуществлять VP9 декодирование – две опции, которые были недоступны в предыдущем Skylake семействе процессоров. HEVC, если коротко, это метод кодирования способный уменьшить пропускную способность видео файлов на почти 50%, при этом сохраняя качество видео благодаря H.264 кодированию.

Помимо этого, Kaby Lake процессоры поддерживают также HDCP 2.2. технологию защиты контента. Если говорить коротко, то HDCP это сокращение от слов High Bandwidth Digital Content Protection (Защита Широкополосного Цифрового Содержимого). Данная технология была разработана самой Intel, для предотвращения незаконного копирования аудио и видео файлов при их передаче. Работает данная технология так: передатчик перед передачей информации запрашивает у приемника разрешение на получение данных и только после положительного ответа начинает передачу контента, причем передача происходит с применением шифрования, поэтому никто другой не сможет подключиться к соединению и подслушать/подсмотреть передаваемую информацию. HDCP используется при таких соединениях как DVI, HDMI и т.д.

Kaby Lake является следующим поколением процессоров от Intel. В данный момент мы используем поколение SkyLake. По крайней мере, большинство из нас, если вы не поспешили с покупкой обновленного .

Вы по-прежнему увидите в продаже ноутбуки с предыдущими поколениями процессоров, как Broadwell и Haswell, но официально они уже в прошлом.

В этой статье мы собрали все детали, которые вы должны знать о предстоящей революции в мире процессоров с Intel Core Kaby Lake.

В погоню!

  • Что это? Процессоры Intel Core 7-го поколения;
  • Когда ждать? Ноутбуки выходят сейчас, ПК – 1 квартал 2017;
  • Сколько стоит? Ценообразование схоже с современными Intel Skylake;

Процессоры Intel Kaby Lake: Дата выхода

22 июля генеральный директор Intel, Брайан Крзанич, подтвердил, что чипсеты Kaby Lake отправились с полей разработки на конвейерные ленты заводов, а затем и производителям персональных компьютеров. Другими словами, процессоры Kaby Lake официально стоят на пороге.

Это значит, что мы могли бы ожидать некоторые Kaby Lake (ПК) уже до конца 2016 года. Тем не менее, в данный момент не известно точно, какие чипсеты придут первой волной.

Intel Kaby Lake включают процессоры настольных компьютеров и ноутбуков Intel Core i3 / i5 / i7 и новые чипсеты Core M.

Даже после лейтмотива компании Intel на собственной конференции Intel Developer Forum в Сан-Франциско, штат Калифорния, мы не знаем даты выхода 7-го поколения процессоров Intel для настольных компьютеров, но все признаки указывают на выставку CES в январе, по крайней мере, так считают некоторые издания, и мы с ними согласны.

В то же время, мы не испытывали недостатка в информационных утечках по новым процессорам Kaby Lake и дате выхода. Некоторые технологические издания, как WCCFtech, обнаружили документы, которые указывают на цены и характеристики, в то время как ребята из Tom’s Hardware утверждают, что купили собственный (возможно, розничный) процессор Kaby Lake.

Процессоры Intel Kaby Lake

Помимо мобильной серии, 20 процессоров Kaby Lake ждут своих пользователей в продаже. От Pentium G3930 к Core i7-7700K, практически полный выбор, доступный с последним поколением.

Процессор Kaby Lake Core i7-7700K является флагманским процессором в этот раз, разблокированным для разгона, на что указывает «К» в наименовании. Новая серия Kaby Lake продолжает использовать серийные имена компании: «7» указывает на серию процессоров Kaby Lake, поскольку это седьмое поколение, так и Skylake являются 6-м поколением с номерами «6» в номере.

Core i7-7700K является 4-ядерным гиперпоточным (hyper-threaded) процессором, и пока первые результаты тестов (за март) обещали нам тактовую частоту между 3,6 ГГц и 4,2 ГГц (Turbo Boost), последние отчеты дразнят поклонников куда более плодотворными 4,2 ГГц / 4,5 ГГц. Конечно, фактические результаты могут отличаться.

Оригинальные утечки вытекают из эталонной базы данных тестов SiSoft, но, к сожалению, эти данные значительно хуже, чем у текущего поколения i7-6700K. Положительная сторона слухов обещает нам более надежный «наддув» на ядро, в 200 МГц / 500 МГц (Boost), соответственно, в сравнении с предшественником.

Утечки также намекают на цену в 350$ (22.000 р.), что очень близко к расходам, которые ждали нас с эквивалентным процессором поколения Skylake на момент релиза.

Далее следует Core i7-7500U, который ушел в сеть бок о бок с i7-7700K. Это CPU, который мы в конечном счете ожидаем видеть на высококлассных ультрабуках. Это чипсет относительно высокой производительности, но он по-прежнему носит «U» в названии, то есть принадлежит семейству ультранизкого напряжения.

Он имеет два ядра, четыре потока и работает с тактовой частотой 2,7 ГГц – 2,9 ГГц (Turbo). Некоторые из вас могут воротить нос от 2-ядерных чипсетов на ноутбуках, но они играют важную роль.

На мобильном фронте, Core M5 и M7 прошлого поколения теперь интегрируют «Y» в семействе Core M. К ним относится Core m3-7Y30, Core i5-7Y54 и Core i7-7Y75, которые используются в ведущих ноутбуках с безвентиляторным дизайном и конвертируемыми форматами в дополнение к процессорам U-серии.

Первые ноутбуки на Intel Kaby Lake

Где мы увидим эти чипсеты в конечном итоге? Ну, в настоящее время они фигурируют в коротком списке ноутбуков, некоторые из которых уже прошли по нашим обзорам. Новые чипы представлены на Razer Blade Stealth и HP Spectre x360, наряду с , среди множества других ультрабуков, гибридов 2 в1 и традиционных ноутбуков.

Если вам интересно, почему последний MacBook Pro по-прежнему цепляется за Skylake, ответ прост: на момент релиза ноутбука, необходимой серии процессоров Kaby Lake ещё не было. К счастью, DigiTimes сообщает, что мы увидим высокого класса ноутбуки на этих чипах на выставке CES в январе.

Некоторые говорят, что компания Apple может пропустить Kaby Lake вовсе, но это кажется маловероятным, поскольку следующее поколение Cannonlake не ожидается раньше второй половины 2017. Согласно графику, 12-дюймовый MacBook должен получить 7-го поколения процессоры Intel уже этой весной.

Архитектура Intel Kaby Lake

Cannonlake, вероятно, окажется гораздо более захватывающим, чем обновление Caby Lake. Видите ли, Kaby Lake очень похожи на семейство Skylake. Это не то, чего мы ждали от преемника Skylake, но Intel изменила стратегию развития своих процессоров.

С 2007 года Intel придерживается режима обновления «tick, tock», где одно поколение приводит к уменьшению процессора, а следующее поколение изменяет архитектуру. Ситуация изменилась в этом году. По состоянию на 2016 год, Intel использует «Процесс, архитектура, оптимизация» в качестве подхода, а KabyLake представляет, откровенно говоря, не самый интересный этап.

Это по-прежнему процессор 14 нм, который всесторонне похож на Skylake, а модели процессоров для настольных компьютеров будут использовать тот же сокет LGA 1151. Если всё пойдет гладко, Cannonlake обещает сократить размеры процессоров к давно обещанным 10 нм в 2017 году.

И пока нас ждут, вероятно, некоторые улучшения производительности и повышение общей эффективности, нам кажется, что владельцам процессоров Skylake нет никакой нужды переходить на KabyLake того же уровня.

Обновление Intel Kaby Lake

Есть несколько разных улучшений, характерных для Kaby Lake, тем не менее. Первым становится полностью интегрированная поддержка USB-C Gen 2. Skylake предложить поддержку сейчас, но требует дополнительной аппаратной части. Скоро технология станет «родной». Опять же, интересное решение, но не необходимое.

Gen 2 USB 3.1 обеспечивает пропускную способность в 10 Гбит, вместо 5 Гбит. Поддержка Thunderbolt 3 там же. В том же ключе приходит и поддержка HDCP 2.2. Это цифровая защита от копирования, новая версия предназначена для определенных стандартов видео 4К. Ultra HD Blu-Ray становится ключевым, хотя 4К видео Netflix также требует процессоров Kaby Lake.

Верно и то, что Kaby Lake также предлагает интегрированные графические процессоры, которые лучше подходят для 4К видео. Благодаря новому медиа-движку на графической архитектуре Gen9, пользователи смогут редактировать 4К видео в реальном времени, используя не больше, чем интегрированную графику. Что касается потребления видео, новый VP9 и HVEC 10-битный расшифровщик позволят смотреть потоковое 4К видео весь день на одной зарядке.

Процессоры Kaby Lake также официально поддерживают Windows 10 среди операционных систем Microsoft. Это ещё одна попытка Microsoft подтолкнуть тех, кто задержался на Windows 7 и других операционных системах.

Apollo Lake: Бедный родственник Kaby Lake

Также стоит учесть и чипсеты Atom, которые занимают нижнюю часть серии, и будут использоваться в очень дешевых ноутбуках и планшетах Windows 10. Несмотря на то, что они не являются частью серии Kaby Lake, последние чипы «Apollo Lake» начали появляться в конце ноября, ASUS и HP в числе первых реализуют новые процессоры.

Они также способны к ускорению воспроизведения 4К видео, благодаря кодекам HEVC и VP9. Это связано отчасти с переходом графики Gen8 на графику Gen9, как и у процессоров Skylake.

Kaby Lake- X: Лучшее последним

Если вы заинтересованы только в основных моделях процессоров Kaby Lake, будущее выглядит не слишком сложным. Они пойдут в серию, прежде чем придет замена в лице Cannonlake в конце 2017 года. Тем не менее, перспективы серьезных чипов высокого класса гораздо более запутаны.

Сейчас новейшие высокопроизводительные процессоры Intel выступают частью серии Broadwell-E, хотя среди основных процессоров, Broadwell устарел. Проще говоря, реальная аппаратная часть высокого класса придет позже. Мы говорим о процессорах, как Core i7-6900K за 100.000 рублей.

Альтернатива Kaby Lake не будет зваться Kaby Lake-E, вместо этого мы ждем Kaby Lake-X, который, как ожидается, будет запущен во второй половине 2017 года, наряду с Skylake-X. Правильно: два поколения одновременно.

Intel Kaby Lake-X будет, по предварительным данным, 4-ядерным процессором, в то время как Skylake-X станет весьма озадачивающим 10-ядерным процессором.

Что простые смертные покупатели ноутбуков и настольных компьютеров должны знать о Kaby Lake, однако: а) мы увидим ещё больше машин, которые используют новые комплекты чипсетов очень скоро и б) если вы не нуждаетесь в обновлении прямо сейчас, 2017 год принесет Cannonlake с интересными усовершенствованиями.

Начавшийся несколько дней назад 2017-й – год больших процессорных анонсов. Так, в этом году AMD должна представить процессоры на новой архитектуре Zen, а Intel собирается внедрить новую платформу для энтузиастов LGA2066. Но всё это – позже. В первые же дни наступившего года на первый план выходят другие процессоры – Intel Kaby Lake, представляющие собой ориентированных на массовые системы, где сейчас применяется платформа LGA1151, последователей Skylake.

И если честно, это – самый неинтересный анонс из всего того набора новинок, который ожидается в ближайшее время. Про Kaby Lake много чего известно уже давно, и вся эта информация не сильно придает оптимизма. Хорошо известно, что новый процессор представляет собой немного подрихтованный Skylake, а значит, никаких особых сюрпризов не несёт. Дело в том, что Kaby Lake, по сути, – вынужденная заплатка на полотне процессорных планов Intel, и сделана она сравнительно по-простому и на скорую руку.

Подобный малозначительный процессорный анонс уже однажды был в истории Intel - в 2014 году компания сорвала сроки выхода Broadwell и вынужденно обновляла ассортимент продукции за счёт Haswell Refresh и Devil’s Canyon. Сегодняшняя ситуация во многом похожа: проблемы с внедрением следующего технологического процесса с 10-нм нормами заставляют Intel придумывать дополнительные промежуточные этапы в эстафете обновления процессоров.

Однако Kaby Lake – всё же не настолько проходная модель. В ней микропроцессорный гигант смог внедрить некоторые улучшения в графическом ядре, но самое главное, при производстве Kaby Lake теперь используется 14-нм техпроцесс второго поколения. Что всё это может дать обычным пользователям и энтузиастам, мы и проанализируем в настоящей статье.

⇡#Новый старый техпроцесс, или Что такое «14-нм+»

Ключевой для Intel принцип разработки новых процессоров, хорошо известный по кодовому названию «тик-так», когда внедрение новых микроархитектур чередовалось с переходом на более совершенные технологические процессы, забуксовал. Изначально каждая стадия в этом конвейере занимала 12-15 месяцев, однако ввод в строй новых производственных технологий с уменьшенными нормами постепенно стал требовать всё больше и больше времени. И в конце концов 14-нм техпроцесс окончательно сломал весь размеренный ритм прогресса. С выпуском процессоров поколения Broadwell возникли настолько критичные задержки, что стало понятно: регулярный и методичный «тик-так» больше не работает.

Так, мобильные представители семейства Broadwell попали на рынок почти на год позже, чем изначально планировалось. Старшие десктопные процессоры появились с почти полуторагодовой задержкой. А решения среднего уровня на этом дизайне и вовсе до стадии массовых продуктов не дошли совсем. Более того, внедрение микроархитектуры Broadwell в сложные многоядерные процессоры происходило настолько медленно, что, когда в середине прошлого года она наконец-то добралась до старших серверных продуктов, мобильный сегмент ушёл почти на два поколения вперёд – и это тоже явно ненормальная ситуация. Даже для компаний масштаба Intel поддержание в актуальном состоянии сразу нескольких процессорных дизайнов и нескольких производственных технологий представляет достаточно серьёзную задачу.

Не меньшие проблемы сулит и предстоящий переход на следующую производственную технологию, поэтому первые процессоры, выпущенные по 10-нм техпроцессу, можно ожидать не ранее второй половины 2017 года. Но если вспомнить, что Intel стала применять 14-нм технологию с третьего квартала 2014 года, а процессоры Skylake появились в середине 2015-го, то получается, что между Skylake и их 10-нм последователями образуется слишком продолжительная, двухгодичная пауза, способная отрицательно сказаться как на имидже компании, так и на продажах. Поэтому в конечном итоге Intel, чтобы избавиться от постоянного отставания от первоначальных планов и по возможности унифицировать свою продукцию, приняла решение кардинально поменять цикл разработки и добавить в него дополнительный такт. В результате вместо принципа «тик-так» теперь будет использоваться новый трёхступенчатый принцип «процесс - архитектура - оптимизация», который подразумевает более длительную эксплуатацию техпроцессов и выпуск по одним и тем же нормам не двух, а как минимум трёх процессорных дизайнов.

Это значит, что, в соответствии с новой концепцией, после Broadwell и Skylake теперь должен следовать не переход на 10-нм нормы, а выпуск ещё одного процессорного дизайна с использованием старых, 14-нм норм. Именно этот добавочный дизайн, разработанный в рамках дополнительной «оптимизации», и получил кодовое имя Kaby Lake. С его первыми носителями, ориентированными на использование в ультрамобильных устройствах, мы уже знакомы – они вышли в конце лета прошлого года. Теперь же компания расширяет ареал обитания Kaby Lake и на другие рынки, в том числе и на традиционные персональные компьютеры.

Ввиду того, что Kaby Lake – это своего рода экспромт, который был вынужденно спроектирован микропроцессорным гигантом на фоне проблем с переходом на 10-нм техпроцесс, оптимизации, заложенные в этот процессор, касаются не микроархитектуры, а в первую очередь технологии производства. Производитель даже говорит о том, что Kaby Lake выпускается с применением второго поколения 14-нм техпроцесса – 14-нм+ или 14FF+. Если коротко, то это означает, что в полупроводниковую структуру процессорных кристаллов внесены достаточно существенные изменения, но разрешение литографического процесса всё-таки осталось тем же. Конкретнее, фирменные трёхмерные транзисторы Intel (3D Tri-gate) в Kaby Lake получили , с одной стороны, более высокие кремниевые рёбра каналов, а с другой – увеличенные промежутки между затворами транзисторов, что фактически означает меньшую плотность расположения полупроводниковых устройств на кристалле.

К сожалению, Intel отказывается сообщать какую-либо конкретную информацию о том, насколько с выходом Kaby Lake изменился её 14-нм техпроцесс. И скорее всего, это связано с тем, что эти изменения можно посчитать некоторым шагом назад. Когда компания вводила в строй свою производственную технологию с 14-нм нормами и анонсировала процессоры поколения Broadwell, она охотно делилась деталями и утверждала, что её FinFET-техпроцесс превосходит аналогичные технологии, применяемые другими производителями полупроводников: TSMC, Samsung и GlobalFoundries. Теперь же, когда в рамках процесса 14-нм+ размеры и профиль транзисторов вновь изменились, их характеристики, по-видимому, выглядят уже не так выигрышно, как раньше.

Впрочем, абсолютные размерности транзисторов интересны лишь для теоретических рассуждений о том, кто из производителей полупроводников владеет самой передовой технологией. Нам же достаточно и качественного описания изменений. Увеличение высоты рёбер трёхмерных транзисторов, являющихся их каналом, открывает возможность для уменьшения сигнальных напряжений и, соответственно, минимизирует токи утечки. Расширение же промежутков между затворами, напротив, требует повышения напряжений, но зато снижает плотность полупроводникового кристалла и упрощает производственный процесс.

Эти два изменения, проведённые одновременно, отчасти компенсируют друг друга - и поэтому кристаллы Kaby Lake работают при тех же напряжениях, что и Skylake. Но зато Intel выигрывает на другом фронте: усовершенствованный техпроцесс даёт лучший выход годных кристаллов. Причём произошедшее разрежение в расположении транзисторов позволяет снизить их взаимное тепловое и электромагнитное влияние, а это влечёт за собой рост частотного потенциала. В результате Intel удалось обойтись без ухудшения характеристик энергоэффективности нового дизайна, но при этом получить более высокочастотную или даже оверклокерскую реинкарнацию Skylake.

Конечно, при этом возникают определённые вопросы, которые касаются себестоимости полупроводниковых кристаллов, выращенных по техпроцессу 14-нм+. Intel говорит, что усреднённая плотность транзисторов в Kaby Lake по сравнению с Skylake не изменилась, однако, скорее всего, это произошло благодаря редизайну и более рациональному задействованию неиспользовавшихся ранее областей кристалла. Тем не менее Intel, по-видимому, всё же потребовалось поменять часть оборудования на фабриках, где запущен выпуск Kaby Lake. На это, в частности, косвенно указывает растянутость анонса Kaby Lake по времени. Очевидно, запустить в массовое производство и ультрамобильные двухъядерные, и мощные четырёхъядерные кристаллы компания не смогла именно из-за необходимости перенастройки или переукомплектации производственных линий.

Но главное - то, что новый техпроцесс, который можно назвать третьим интеловским 3D tri-gate-процессом, действительно позволил компании наладить выпуск чипов с более высокой тактовой частотой. Например, базовая частота старшего десктопного Kaby Lake достигла величины 4,2 ГГц, в то время как флагманский Skylake имел на 200 МГц более низкую частоту. Конечно, в отсутствие улучшений в микроархитектуре всё это вызывает некие ассоциации с Devil’s Canyon, но Kaby Lake – это не просто разогнанный Skylake. Он получился благодаря глубокому тюнингу, который затронул полупроводниковую основу процессора.

⇡#Изменения в микроархитектуре, которых нет

Несмотря на существенные трансформации в производственной технологии, никаких улучшений на микроархитектурном уровне в Kaby Lake сделано не было, и этот процессор имеет ровно такую же характеристику IPC (число исполняемых за такт инструкций), как и его предшественник, Skylake. Иными словами, всё преимущество новинки состоит в способности работать на увеличенных тактовых частотах и в отдельных изменениях во встроенном медиадвижке, касающихся поддержки аппаратного кодирования и декодирования видео в формате 4K.

Впрочем, для мобильных процессоров даже кажущиеся незначительными нововведения могут давать заметный эффект. В конце концов, улучшение техпроцесса выливается в повышение энергоэффективности, а значит, новое поколение ультрамобильных устройств сможет предложить более продолжительное время работы от батареи. В процессорах же для настольных компьютеров мы можем получить дополнительный прирост на 200-400 МГц в тактовых частотах, достигнутый в рамках установленных ранее тепловых пакетов, но не более того.

При этом на одинаковых тактовых частотах Skylake и Kaby Lake будут выдавать совершенно идентичную производительность. Микроархитектура в обоих случаях одна и та же, поэтому даже привычному приросту производительности в пределах 3-5 процентов взяться попросту неоткуда. Подтвердить это несложно и практическими данными.

Обычно для иллюстрации преимуществ новых микроархитектур мы пользуемся простыми синтетическими тестами, которые чутко реагируют на изменения в тех или иных процессорных блоках. На этот раз мы воспользовались бенчмарками, входящими в комплект тестовой утилиты AIDA64 5.80. На следующих графиках приводятся показатели производительности старших четырёхъядерных процессоров поколений Haswell, Broadwell, Skylake и Kaby Lake, работающих на одной и той же постоянной частоте 4,0 ГГц.

Все три группы тестов: целочисленные, FPU и рендеринг методом трассировки лучей - сходятся в том, что на одинаковой частоте Skylake и Kaby Lake выдают совершенно идентичную производительность. Это подтверждает отсутствие каких бы то ни было микроархитектурных отличий. Следовательно, к Kaby Lake правомерно относиться как к Skylake Refresh: новые процессоры привносят прирост быстродействия только за счёт выросших частот.

Но и тактовые частоты Kaby Lake особого впечатления не производят. Например, когда Intel выпускала Devil’s Canyon, рост номинальной частоты достигал 13 процентов. Сегодня же прирост частоты старшей модели Kaby Lake по сравнению со старшим Skylake составляет всего порядка 7 процентов.

А если учесть, что в 14-нм процессорах Broadwell и Skylake предельные частоты откатывались назад по сравнению с 22-нм предшественниками, получается, что старший Kaby Lake всего лишь на 100 МГц превосходит по частоте Devil’s Canyon.

⇡#Линейка Kaby Lake для настольных компьютеров

Первые процессоры поколения Kaby Lake компания Intel представила ещё летом. Однако тогда это были лишь представители энергоэффективных серий Y и U, ориентированные на планшетные и ультрамобильные компьютеры. Все они имели только два ядра и графическое ядро класса GT2, то есть представляли собой сравнительно простые чипы. Основная же масса Kaby Lake, в том числе и четырёхъядерники, выходят только сейчас. Причём речь идёт об обновлении ассортимента сразу всех классов процессоров, включая 4,5-ваттные Core Y-серии; 15- и 28-ваттные Core U-серии с графикой HD Graphics и Iris Plus; 45-ваттные мобильные Core, в том числе и их версии со свободным множителем; 45-ваттные мобильные Xeon; а также набор процессоров S-серии для настольных компьютеров с тепловыми пакетами 35, 65 и 95 Вт.

Сегодняшний анонс затрагивает в общей сложности 36 различных моделей процессоров, из которых только 16 относятся к десктопным. Но именно о них мы будем говорить сегодня в подробностях.

Ранее при обновлении модельного ряда процессоров для настольных ПК компания Intel предпочитала разносить по времени выход четырёхъядерных и двухъядерных чипов. Но в этот раз план несколько иной. Компания всё равно не стала вываливать на рынок сразу весь ассортимент обновлённых LGA1151-процессоров, но первая партия десктопных Kaby Lake оказалась более массовой, чем обычно: она включает в себя не только четырёхъядерные Core i7 и Core i5, но и двухъядерные Core i3. То есть во время второго этапа обновления, который ориентировочно произойдёт весной, будут представлены лишь процессоры бюджетных семейств Pentium и Celeron.

Семейство десктопных процессоров Core i7 седьмого поколения (к которому относится дизайн Kaby Lake) включает в себя три модели:

Core i7-7700K Core i7-7700 Core i7-7700T
Ядра/потоки 4/8 4/8 4/8
Технология Hyper-Threading Есть Есть Есть
Базовая частота, ГГц 4,2 3,6 2,9
4,5 4,2 3,8
Разблокированный множитель Есть Нет Нет
TDP, Вт 91 65 35
HD Graphics 630 630 630
1150 1150 1150
L3-кеш, Мбайт 8 8 8
Поддержка DDR4, МГц 2400 2400 2400
Поддержка DDR3L, МГц 1600 1600 1600
Технологии vPro/VT-d/TXT Только VT-d Есть Есть
Расширения набора инструкций AVX 2.0 AVX 2.0 AVX 2.0
Упаковка LGA1151 LGA1151 LGA1151
Цена $339 $303 $303

В семейство Core i7 по-прежнему входят четырёхъядерные процессоры с поддержкой технологии Hyper-Threading, имеющие кеш-память третьего уровня объёмом 8 Мбайт. Но по сравнению с Skylake частоты новых Core i7 выросли на 200-300 МГц, а кроме того, у процессоров появилась официальная поддержка DDR4-2400. В остальном же новинки похожи на предшественников. На привычном уровне остались и рекомендованные цены: Kaby Lake заменят представителей семейства Skylake в старых ценовых категориях.

Примерно такая же картина складывается и с процессорами Kaby Lake, относящимися к классу Core i5. Разве что здесь ассортимент существенно шире.

Core i5-7600K Core i5-7600 Core i5-7500 Core i5-7400 Core i5-7600T Core i5-7500T Core i5-7400T
Ядра/потоки 4/4 4/4 4/4 4/4 4/4 4/4 4/4
Технология Hyper-Threading Нет Нет Нет Нет Нет Нет Нет
Базовая частота, ГГц 3,8 3,5 3,4 3,0 2,8 2,7 2,4
Максимальная частота в турборежиме, ГГц 4,2 4,1 3,8 3,5 3,7 3,3 3,0
Разблокированный множитель Есть Нет Нет Нет Нет Нет Нет
TDP, Вт 91 65 65 65 35 35 35
HD Graphics 630 630 630 630 630 630 630
Частота графического ядра, МГц 1150 1150 1100 1000 1100 1100 1000
L3-кеш, Мбайт 6 6 6 6 6 6 6
Поддержка DDR4, МГц 2400 2400 2400 2400 2400 2400 2400
Поддержка DDR3L, МГц 1600 1600 1600 1600 1600 1600 1600
Технологии vPro/VT-d/TXT Только VT-d Есть Есть Только VT-d Есть Есть Только VT-d
Расширения набора инструкций AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0
Упаковка LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
Цена $242 $213 $192 $182 $213 $192 $182

Линейка четырёхъядерных процессоров Core i5 лишена технологии Hyper-Treading, обладает L3-кешем размером 6 Мбайт и по сравнению с Core i7 предлагает немного более низкие тактовые частоты. Но, как и в случае с Core i7, процессоры серии Core i5 поколения Kaby Lake быстрее своих предшественников на 200-300 МГц. В остальном же они унаследовали характеристики от Skylake без каких-либо существенных изменений.

Зато в серии Core i3 произошли важные перемены. При внедрении дизайна Kaby Lake в состав этого семейства в него был добавлен оверклокерский процессор с разблокированным коэффициентом умножения, который по сложившейся традиции получил литеру K в модельном номере.

Серия Core i3 объединяет двухъядерные процессоры с поддержкой технологии Hyper-Threading, оснащённые кеш-памятью третьего уровня объёмом 3 или 4 Мбайт. Характеристики новинок поколения Kaby Lake вновь повторяют спецификации соответствующих Skylake с разницей лишь в тактовых частотах, которые стали выше на 200 МГц.

Core i3-7350K Core i3-7320 Core i3-7300 Core i3-7100 Core i3-7300T Core i3-7100T
Ядра/потоки 2/4 2/4 2/4 2/4 2/4 2/4
Технология Hyper-Threading Есть Есть Есть Есть Есть Есть
Базовая частота, ГГц 4,2 4,1 4,0 3,9 3,5 3,4
Максимальная частота в турборежиме, ГГц
Разблокированный множитель Есть Нет Нет Нет Нет Нет
TDP, Вт 60 51 51 51 35 35
HD Graphics 630 630 630 630 630 630
Частота графического ядра, МГц 1150 1150 1150 1100 1100 1100
L3-кеш, Мбайт 4 4 4 3 4 3
Поддержка DDR4, МГц 2400 2400 2400 2400 2400 2400
Поддержка DDR3L, МГц 1600 1600 1600 1600 1600 1600
Технологии vPro/VT-d/TXT Только VT-d Только VT-d Только VT-d Только VT-d Только VT-d Только VT-d
Расширения набора инструкций AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0 AVX 2.0
Упаковка LGA1151 LGA1151 LGA1151 LGA1151 LGA1151 LGA1151
Цена $168 $149 $138 $117 $138 $117

Однако, помимо обновлённых версий привычных двухъядерников, в серии Core i3 теперь появилась принципиально новая модель – процессор Core i3-7350K, характерный имеющимися в нём оверклокерскими возможностями. Ранее среди двухъядерных процессоров у Intel подобных предложений никогда не было (эксперимент в виде Pentium Anniversary Edition – не в счёт), теперь же компания, похоже, решила официально понизить входной барьер в мир разгона. И Core i3-7350K представляется действительно очень интересным вариантом для стеснённых в средствах энтузиастов, ведь его цена на целых 30 процентов ниже стоимости оверклокерского Core i5. Причём весьма вероятно, что за счёт уменьшенного по площади ядра с невысоким тепловыделением этот процессор сможет порадовать и высоким разгонным потенциалом, который мы постараемся проверить на практике при первой же возможности.

Несколько слов следует сказать и о графическом ядре новинок. Все настольные процессоры поколения Kaby Lake получили одну и ту же встроенную графику уровня GT2, которая включает в себя 24 исполнительных устройства – ровно столько, сколько было в ядре GT2 у процессоров Skylake. А поскольку базовая архитектура GPU в новом процессорном дизайне не изменилась, 3D-производительность Kaby Lake осталась на старом уровне. Появление же в названии HD Graphics более высокого числового индекса 630 всецело связано с новыми возможностями аппаратного медиадвижка, в который были добавлены средства для быстрого кодирования/декодирования видео в форматах VP9 и H.265, а также полная поддержка материалов в 4K-разрешении.

⇡#Новые возможности Intel QuickSync

С точки зрения традиционных процессорных возможностей Kаby Lake не выглядит как серьёзный шаг вперёд по сравнению с Skylake. Такое ощущение создаётся из-за того, что в новом процессоре нет никаких микроархитектурных улучшений. Тем не менее Intel назвала новый процессор собственным кодовым именем - Kaby Lake, чем пытается донести мысль, что перед нами не просто Skylake с увеличенными рабочими частотами. И отчасти это действительно так. Некоторые принципиальные улучшения, которые могут быть заметны конечным пользователям, есть в графическом ядре новых CPU. Несмотря на то, что архитектура GPU процессоров Kaby Lake относится к девятому поколению (как и у Skylake), его мультимедийные возможности существенно расширились. Иными словами, базовый дизайн графического ядра (включая и число исполнительных устройств) в Kaby Lake остался старым, но блоки, отвечающие за кодирование и декодирование видеоконтента, претерпели значительные усовершенствования как в части функциональности, так и по производительности.

Самое главное: теперь медиадвижок Kaby Lake может полностью аппаратно ускорять кодирование и декодирование 4K-видео в формате HEVC с профилем Main10. В Skylake же, напомним, декодирование HEVC Main10 тоже было заявлено, но там оно было реализовано по гибридной схеме, и нагрузка распределялась между медиадвижком, шейдерами встроенного GPU и вычислительными ресурсами самого процессора. Из-за этого качественное воспроизведение достигалось лишь в случае 4Kp30-видео, более же сложные форматы качественно и без выпадения кадров проигрывать не получалось даже на старших моделях CPU. С Kaby Lake подобных проблем возникать не должно: новые процессоры декодируют HEVC-видео, опираясь на один только медиадвижок, и это позволяет им переваривать сложные профили и высокие разрешения без нагрузки на вычислительные ядра: с высокой эффективностью, без выпадения кадров и с низким потреблением энергии. Intel обещает, что у специализированных блоков медиадвижка Kaby Lake может хватить сил не только на воспроизведение 4K-видео с 60 и даже 120 кадрами в секунду, но и на одновременное декодирование до восьми стандартных AVC- или HVEC-потоков 4Kp30.

Кроме того, медиадвижок Kaby Lake получил аппаратную поддержку кодека VP9, разработанного Google. Аппаратное декодирование видео возможно с 8- и 10-битной цветовой глубиной, а кодирование – с 8-битной. В Skylake же работа с VP9-видео, так же, как и в случае с HEVC, осуществлялась по гибридной аппаратно-программной схеме. В результате Kaby Lake может оказаться весьма полезен для любителей посмотреть 4K-видео на YouTube, поскольку кодек VP9 активно внедряется именно в этом сервисе.

В общей сложности ситуация с аппаратной поддержкой в Kaby Lake различных форматов видео выглядит следующим образом:

Kaby Lake Skylake
Аппаратное воспроизведение
H.264 Да Да
HEVC Main Да Да
HEVC Main10 Да Гибридное
VP9 8-бит Да Гибридное
VP9 10-бит Да Нет
Аппаратное кодирование
H.264 Да Да
HEVC Main Да Да
HEVC Main10 Да Нет
VP9 8-бит Да Нет
VP9 10-бит Нет Нет

Блок-схема графической части Kaby Lake приведена на иллюстрации ниже. Структурных отличий от Skylake в ней почти нет, однако они присутствуют на более низком уровне. Так, в блок MFX (Multi-Format Codec) внедрена аппаратная поддержка HEVC Main10 и VP9. В результате именно этот блок получил возможность самостоятельного декодирования видео в форматах VP9 и HEVC с 10-битной глубиной цвета, а также кодирования HEVC с 10-битной цветностью и VP9 с 8-битной цветностью.

Помимо MFX, обновился и блок VQE (Video Quality Engine), отвечающий за работу аппаратного кодера. Нововведения направлены на улучшение качества и производительности при работе с AVC-видео. Так, Intel хочет постепенно внедрить возможность работы с HDR-контентом и планомерно расширяет поддерживаемую цветность на разных этапах конвейера. Однако нужно иметь в виду, что на данный момент все функции кодирования ориентированы только на цветовую субдискретизацию 4:2:0. Это не является проблемой при любительской работе с видео, но для профессиональных применений требуется более точное кодирование 4:2:2 или 4:4:4, которого в рамках Intel QuickSync пока нет.

Надо сказать, что обычно пользователи десктопных процессоров Intel уделяют не слишком много внимания возможностям медиадвижков. Ведь они являются частью графического ядра, которое в обычных производительных системах отключается в пользу дискретной видеокарты. Однако на самом деле в современных интеловских платформах медиадвижком можно пользоваться и при наличии дискретной видеокарты. Для этого необходимо лишь не отключать встроенную графику, а активировать её через BIOS материнской платы в качестве вторичного видеоадаптера. В этом случае в операционной системе будет обнаружено сразу два графических адаптера, и, после установки драйвера Intel HD Graphics, процессорный медиадвижок Intel QuickSync станет доступным для использования.

Приведём несколько простых примеров практической пользы такой конфигурации.

Вот, например, как обстоит дело с воспроизведением на Core i7-7700K сложного медиаконтента – 4Kp60 HEVC Main10-ролика с битрейтом около 52 Мбит/c. Декодирование выполняется с помощью Intel Quick Sync.

Выпадения кадров нет, загрузка процессора – на минимальных значениях. Это же видео встроенная графика Core i7-6700K и уж тем более процессоров с более ранними дизайнами не могла проигрывать без выпадения кадров. Поэтому для воспроизведения подобных роликов раньше приходилось опираться на программное декодирование, работающее только на высокопроизводительных платформах, да и то не всегда.

Другой пример – перекодирование видео. В рамках знакомства с Kaby Lake мы посмотрели на производительность перекодирования исходного 1080p-ролика различными программными и аппаратными кодерами. Для целей тестирования использовалась популярная утилита HandBrake 1.0.1, которая позволяет выполнять перекодирование как через Intel QuickSync, так и программно – с использованием кодеров x264 и x265.

В тестах применялся стандартный профиль качества Fast 1080p30.

Преимущества в производительности, которые можно получить при перекодировании с использованием аппаратных возможностей медиадвижка, – более чем существенные. Несмотря на то, что в обоих случаях был получен примерно одинаковый по качеству результат с битрейтом около 3,7 Мбит/с, движок Intel QuickSync может предложить в разы более высокую скорость перекодирования, которое к тому же происходит с минимальной нагрузкой на вычислительные процессорные ядра. Правда, скорость аппаратного перекодирования в Kaby Lake по сравнению с Skylake почти не выросла.

Ещё один пример – стриминг. Поскольку Intel QuickSync позволяет кодировать видео без нагрузки на вычислительные ядра процессора, стримеры для своих трансляций вполне могут обойтись одной системой с процессором Kaby Lake. Например, популярная программа для онлайн-трансляций OBS Studio поддерживает H.264-кодирование посредством интеловского медиадвижка и способна в этом случае работать параллельно с исполняемыми на дискретной видеокарте игровыми приложениями, не снижая их производительности.

Иными словами, даже в производительной системе, оснащённой внешней графической картой, применений для Intel QuickSync можно найти массу. И его возросшая в Kaby Lake функциональность приходится как нельзя кстати. Аппаратные мультимедийные возможности этого блока, который стал практически всеядным, действительно расширяют сферу применения типичного персонального компьютера.

Говоря о встроенном в Kaby Lake графическом ядре, нельзя не упомянуть, что оно, как и в Skylake, может поддерживать до трёх 4K-мониторов одновременно. Однако, несмотря на ожидания, врождённая поддержка интерфейса HDMI 2.0 в десктопных процессорах нового поколения так и не появилась. Это значит, что мониторы, подключенные через HDMI-порт, на большинстве материнских плат смогут обеспечить лишь максимальное разрешение 4096 × 2160 @ 24 Гц. Полноценное же 4K-разрешение, как и раньше, будет доступно лишь при использовании DisplayPort 1.2-подключения. Впрочем, существует и альтернативное решение, позволяющее производителям систем оборудовать HDMI 2.0-выходы, оно заключается в использовании добавочных конвертеров LSPCon (Level Shifter - Protocol Converter), устанавливаемых в DP-тракте. Однако такой подход, естественно, требует дополнительных затрат.

Тем не менее Intel обещает, что системы на базе процессоров Kaby Lake без особых проблем в части совместимости смогут воспроизводить премиальный 4K-контент, защищенный DRM (например, из премиум-аккаунта сервиса Netflix). При отсутствии порта HDMI 2.0 для этого подойдёт и система с DisplayPort, подключенная к 4K-телевизору или монитору с поддержкой HDCP2.2.

В итоге в медиадвижке Kaby Lake дан ответ на основную претензию к Skylake - по поводу отсутствия аппаратного ускорения 4Kp60 HEVC Main10. Плюс добавлены некоторые другие полезные возможности и усовершенствования, в результате чего встроенная графика Kaby Lake действительно лучше приспособлена для работы с набирающим популярность 4K-видео и с сервисами потоковой трансляции контента. Однако нужно иметь в виду, что одних только аппаратных усовершенствований для внедрения новых функций недостаточно, и впереди – большая работа по обновлению и адаптации программного обеспечения.

⇡#Чипсеты для Kaby Lake: Intel Z270 и другие

По традиции вместе с новыми процессорами Intel выводит на рынок и новые наборы системной логики. То есть, несмотря на то, что принцип «тик-так» сменился принципом «процесс - архитектура - оптимизация», с чипсетами всё осталось по-старому: они обновляются на каждом витке прогресса. Однако на этот раз незначительность усовершенствований в Kaby Lake по сравнению с Skylake позволила сохранить полную совместимость со старой платформой. Kaby Lake не только устанавливаются в уже знакомый нам процессорный разъём LGA1151, но и прекрасно работают в материнских платах со старыми наборами логики сотой серии.

Оптимизации, произошедшие в технологии производства новых процессоров, не потребовали изменений схемы питания. Она, как и в случае Skylake, у Kaby Lake должна находиться на плате, а не в процессоре. При этом требования к напряжениям и токам остались теми же, что и были раньше. А это значит, что никаких схемотехнических препятствий к установке Kaby Lake в старые LGA1151-платы нет. Единственное, что требуется для поддержки новых CPU старыми платами, – наличие в BIOS материнской платы соответствующего микрокода. И большинство плат на Z170 и других чипсетах прошлого поколения необходимое обновление своевременно получили.

Новые же наборы логики с модельными номерами из двухсотой серии спроектированы Intel скорее по привычке и просто для того, чтобы у производителей материнских плат появились какие-то основания для обновления платформ. Поэтому нет ничего удивительного в том, что по возможностям отличия от прошлых чипсетов получились минимальными и, можно сказать, даже косметическими. Никаких действительно полезных дополнений в виде поддержки интерфейсов USB 3.1 или Thunderbolt в Intel Z270 и прочих чипах серии не появилось, а главное улучшение, на которое напирает Intel, заключается в поддержке перспективных накопителей Intel Optane.

Вот как соотносятся между собой чисто технические характеристики старших чипсетов в сотой и двухсотой сериях:

Intel Z270 Intel Z170
Поддержка процессоров LGA1151, Intel Core 6 и 7 поколений (Kaby Lake и Skylake)
Конфигурация CPU PCI Express 1 × 16x или 2 × 8x или 1 × 8x + 2 × 4x
Независимые дисплейные выходы 3
Слотов DIMM 4 DDR4 DIMM или 4 DDR3L DIMM
Поддержка разгона CPU Есть
Intel Optane Technology Есть Нет
Intel Rapid Storage Technology 15 14
Поддержка PCIe SSD в RST Есть
Макс. число PCIe SSD (M.2) в RST 3
RAID 0, 1, 5, 10 Есть
Intel Smart Response Technology Есть
Технология I/O Port Flexibility Есть
Общее число высокоскоростных портов 30 26
USB-порты (USB 3.0), макс. 14 (10) 14 (8)
SATA 6 Гбит/с порты, макс. 6
Линии PCI Express 3.0, макс. 24 20

Причём в том, что касается главного маркетингового аргумента в пользу чипсетов двухсотой серии – поддержки Optane, Intel во многом лукавит. На самом деле накопители Optane не потребуют никаких специальных интерфейсов или разъёмов. Для работы им будет нужен обычный слот M.2 с заведённой в него шиной PCI Express 3.0 x4, и такие слоты есть на многих старых LGA1151-платах. В случае же новых наборов логики речь просто идёт о том, что в них число линий PCI Express несколько увеличено, и это позволяет производителям плат без проблем добавить на свои платформы более одного слота M.2. Дело в том, что, как предполагается, первые версии Intel Optane обычные SSD собой не заменят. Они получат крайне небольшие объёмы и будут позиционироваться в роли дополнительных кеширующих накопителей, поэтому под них предполагается отводить отдельный независимый слот, который в чипсетах двухсотой серии реализовать легче. Кроме того, для новых чипсетов будет сделан специальный Rapid Storage Technology-драйвер, в котором будут заложены некие оптимизированные для Optane алгоритмы работы, похожие по сути на новую версию технологии Intel Smart Response.

Таким образом, значимым отличием Z270 от Z170 следует считать не надуманную поддержку Optane, а увеличенное на четыре штуки (до 24) максимальное число поддерживаемых чипсетом линий PCI Express 3.0. Причём это изменение нашло отражение и в изменении схемы I/O Port Flexibility, в рамках которой теперь допускается одновременная реализация сразу 30 высокоскоростных интерфейсов. Количество портов SATA и USB при этом сохранилось на старом уровне, но в Z270 в стандарте USB 3.0 может работать не 8, а 10 портов.

Множество новых чипсетов двухсотой серии состоит не только из одного Intel Z270. Акцентировать внимание именно на нём мы решили потому, что он – самый оснащённый и единственный, поддерживающий разгон процессора (как через изменение множителей, так и частотой базового тактового генератора). Однако, кроме него, линейка новых наборов логики включает пару более простых потребительских чипсетов - H270 и B250, а также пару чипсетов для корпоративной среды – Q270 и Q250, которые выделяются наличием набора функций Intel Standard Manageability для удалённого управления и администрирования.

Наиболее же интересные для обычных пользователей H270 и B250 отличаются от Z270 не только отсутствием оверклокерских возможностей. В них сокращено число линий PCI Express 3.0 и портов USB 3.0, а также урезано количество M.2-интерфейсов, которые могут быть подключены к драйверу Intel RST. Кроме того, младшие наборы системной логики не позволяют делить процессорную шину PCI Express по нескольким слотам.

Полное представление о соответствии характеристик наборов логики двухсотой серии можно получить из следующей таблицы.

⇡#Тестовый процессор: Core i7-7700K

Для проведения тестирования нам был предоставлен старший представитель десктопной линейки Kaby Lake, Core i7-7700K.

Этот четырёхъядерный процессор с поддержкой технологии Hyper-Threading и 8-мегабайтным кешем третьего уровня имеет паспортную тактовую частоту 4,2 ГГц. Однако проверка показала, что в практических условиях частота Core i7-7700K составляет 4,4 ГГц при нагрузке на все ядра и 4,5 ГГц – при малопоточной нагрузке. Таким образом, по частотам старшему Kaby Lake удалось обогнать не только Core i7-6700K, но и старичка Core i7-4790K, который до недавних пор оставался самым высокочастотным процессором Intel для настольных систем.

Рабочее напряжение нашего экземпляра составило 1,2 В: здесь существенных отличий от процессоров прошлых поколений нет.

В состоянии простоя частота Kaby Lake снижается до 800 МГц, причём, помимо привычной технологии Enhanced Intel SpeedStep, процессором поддерживается и более новая технология Intel Speed Shift. Она передаёт управление частотой от операционной системы самому процессору. За счёт этого достигается значительное улучшение времени реакции на изменяющуюся нагрузку: процессор быстрее выходит из энергосберегающих состояний и в случае необходимости быстрее включает турборежим. Но есть и ограничение: технология Speed Shift работает лишь в Windows 10.

Слева – Core i7-7700K (Kaby Lake), справа – Core i7-6700K (Skylake)

Определённые изменения произошли и с внешним видом CPU. Правда, они носят скорее косметический характер. Например, от использования тонкого текстолита, который появился в Skylake, Intel в Kaby Lake не отказалась. Зато поменялась форма теплораспределительной крышки. У неё появились дополнительные приливы, которые увеличивают площадь контакта с подошвой кулера. Впрочем, на эффективность теплоотвода это, скорее всего, повлияет мало. Ведь главная проблема на пути тепла от процессорного кристалла – полимерный термоинтерфейс не лучшего качества, который располагается под процессорной крышкой. А в этом отношении все как прежде: высокоэффективный припой остаётся прерогативой флагманских процессоров в LGA2011-v3 исполнении.

Перемены есть и со стороны процессорного «брюшка». Впрочем, Kaby Lake сохраняет совместимость с гнездом LGA1151, поэтому отличий по сравнению с Skylake здесь совсем мало. Стабилизирующая схема осталась той же самой, так что набор навесных элементов сохранился. Небольшую разницу можно заметить лишь в их взаимном расположении.

Если вы заметили ошибку - выделите ее мышью и нажмите CTRL+ENTER.

материал сайта 3dnews.ru

Если коротко: перед вами те же чипы Skylake, но с более высокими частотами и продвинутым аппаратным движком обработки видео. И все же некоторые модели весьма интересны. К тому же есть незыблемое правило: компьютер с нуля лучше собирать на как можно более современном железе.

Intel Core i3-7320

Коротко о продукте: 2 ядра, но 4 потока, 4,1 ГГц, 4 МБ кэш третьего уровня, 51 Вт TDP
Особенности: очень высокая частота в дефолте - 4,1 ГГц
Цена: 149 долларов США
Бюджет игрового компьютера с этим процессором: 35-40 000 рублей

Первоначально это место в подборке отводилось Core i3-7350K. Он уникальный. Как поется в песне группы «Кино»: перемен требуют наши сердца! Действительно, с 2011 года у Intel есть два процессора с возможностью разгона. Один Core i5 и один Core i7 (был еще юбилейный Pentium G3258 , но это исключение, подтверждающее правило). Такие модели легко распознать. Они самые быстрые, они самые дорогие, они имеют литеру «К» в названии. Ветер перемен подул именно в 2017 году, именно с выпуском Core i3-7350K. Уже давно Intel не выпускала оверклокерские бюджетные процессоры. Естественно, за разгонные способности придется доплатить. Чип стоит 168 долларов, но это, тем не менее, дешевле самого медленного Kaby Lake-четырехъядерника Core i5-7400 ($182).

Core i3-7350K быстрый и без какого-либо разгона. Работает на частоте 4,2 ГГц. Его вполне возможно разогнать вплоть до 4,8-5,0 ГГц. Естественно, для этого потребуется иметь в своем арсенале качественный кулер. И вообще для разгона необходима более дорогая материнская плата на чипсете Z170/Z270 Express. О том, какие устройства необходимы Core седьмого поколения, читайте в этом материале . Так что экономия - вопрос спорный. Как и возможность оверклока. Но 4,2 ГГц из коробки - это уже серьезно. А Core i3-7320 работает со скоростью 4,1 ГГц. Всего на 100 МГц меньше, но зато мы экономим сразу 19 долларов.

Intel Core i3-7320

Intel Core i5-7400

Коротко о продукте: 4 ядра, 3,0 (3,5) ГГц, 6 МБ кэш третьего уровня, 65 Вт TDP
Особенности: самый дешевый четырехъядерный Kaby Lake
Цена: 182 доллара
Бюджет игрового компьютера: 50-55 000 рублей

А у процессоров Core i5, как известно, в наличии полноценные четыре ядра. А современные игры все больше и больше любят многопоточность. Пожалуй, самый наглядный пример - это Battlefield 1. В нем любой Core i5 загружен на 100%. Но такого чипа все равно достаточно для сборки игрового компьютера с мощной видеокартой, включая Radeon RX 480 и GeForce GTX 1060 .

Не забываем про одну заманчивую особенность новеньких Kaby Lake. Чипы получили не очень быструю встроенную графику HD 630, но у нее есть продвинутый медиаблок. В итоге все силы процессора могут быть «кинуты» на обеспечение работы видеокарты, а аппаратные блоки интегрированного GPU, например, обеспечат работу программы потокового вещания OBS.

Intel Core i5-7400

Intel Core i7-7700

Коротко о продукте: 4 ядра, но 8 потоков, 3,6 (4,2) ГГц, 8 МБ кэш третьего уровня, 65 Вт TDP
Особенности: самый быстрый процессор с 65 Вт TDP
Цена: 303 доллара
Бюджет игрового компьютера: 60-75 000 рублей

Подробно возможности Core i7-7700 изучены в обзоре . Самая «мякотка» заключается в том, что при довольно низком для настольных процессоров TDP (всего 65 Вт) под нагрузкой все четыре ядра чипа функционируют на частоте 4 ГГц. Получаем две вещи. Во-первых, толк от восьми поток есть в том числе и в играх. Во-вторых, высокая частота. Поможет и в работе, и в развлечениях. Core i7-7700 отлично подружится с видеокартой уровня GeForce GTX 1070 . А невысокий уровень типичного тепловыделения позволит собрать игровой компьютер любой сложности. Да хоть размером с игровую приставку!

Intel Core i7-7700

Intel Core i7-7700K

Коротко о продукте: 4 ядра, но 8 потоков, 4,2 (4,5) ГГц, 8 МБ кэш третьего уровня, 91 Вт TDP
Особенности: разгоняется до 5 ГГц. Если повезет.
Цена : 339 долларов
Бюджет игрового компьютера: 100 000 рублей

Мейнстрим-платформа Intel, а LGA1151 такой и является, поддерживает максимум четырехъядерные процессоры Core i7. Поэтому Core i7-7700K отличается от Core i7-7700 только частотой, наличием разблокированного множителя и, как следствие, увеличенным уровнем TDP. Модель оверклокерская. При должном везении разгоняется до 5 ГГц с использованием хорошей системы охлаждения. В последний раз такой оверклокерской прытью хвастали чипы Sandy Bridge, выпущенные в далеком 2011 году. Понятно, что с Core i7-7700K может использоваться любая современная видеокарта. Или даже две.

Команды Intel и AMD объединились, чтобы немного осадить "зелёных" из Nvidia с их мобильными видеокартами, и обещают нам тонкие и мощные игровые ноутбуки . То есть новые процессоры Intel Kaby Lake G, усиленные графикой AMD Vega M, по производительности могут опережать карты GTX 1060 Max-Q, потребляя при этом меньше энергии. Звучит впечатляюще, не так ли?

Как показала январская выставка CES (Consumer Electronics Show), взрывное событие должно произойти в этом году; как раз во время начала открытой пресс-конференции Nvidia – этого большого технологического шоу, Intel объявила о своих планах прервать гегемонию Nvidia в массовом секторе мобильного игрового рынка.

Информация к размышлению

Сроки выпуска Intel Kaby Lake G
Машины, оснащенные новыми процессорами Intel с графикой Radeon, могут появиться в конце марта. Мини-компьютеры Intel NUC Hades Canyon будут отгружены в конце марта.

Спецификации Intel Kaby Lake G
Чипы Kaby Lake G будут выпускаться с двумя основными вариантами графики Vega M: первый – с 20 вычислительными блоками и 1280 ядрами GCN, и второй – с 24 вычислительными блоками и 1536 ядрами GCN. В обоих вариантах предусмотрено 4 ГБ памяти HBM2. Все компоненты CPU, включая Core i5, будут четырехъядерными и восьмипоточными.

Архитектура Intel Kaby Lake G
В чипах серии G используются CPU с относительно старой архитектурой Kaby Lake на базе 14-нм техпроцесса, оснащенные модифицированным графическим чипом Radeon Vega, подключенным через PCIe 3.0. Чип Vega M подключается к памяти HBM2 через внутреннее соединение Intel EMIB.

Производительность Intel Kaby Lake G
Intel обещает лучшую, чем у карт Nvidia, производительность в играх с обоими вариантами графики – Vega M GH и Vega M GL, при этом по результатам игровых тестов чипы с 24 вычислительными блоками превосходят GTX 1060 Max-Q на 10%, а чипы с 20 вычислительными блоками в некоторых тестах опережают GTX 1050 на 40%.

Новые процессоры Kaby Lake G обещают нам массовые игровые ноутбуки, для которых не будет необходимости дополнительно приобретать тяжелые и сильно греющиеся дискретные видеокарты Nvidia или AMD. Одна только экономия места дает возможность делать ноутбуки с более емкими батареями, более эффективными и менее шумными вентиляторами, или просто более компактные игровые ноутбуки со сниженным энергопотреблением.

Появление смешанного чипа с CPU Intel Core и графикой Radeon Vega показывает, насколько сильно обе компании хотят вытеснить Nvidia с прибыльного рынка игровых ноутбуков. За последние три года рынок игровых ноутбуков вырос в общей сложности на 42%, и это в мире, где Apple старается доказать вам, что компьютер свое отжил, и все остальные говорят, что уже никто больше не покупает настольные ПК.

Несмотря на острые в прошлом отношения, AMD и Intel по ряду противоречий достигли компромисса – чисто денежный интерес может оказаться хорошим посредником – поскольку, как знает любой знаток Total War, враг моего врага – мой друг. Или поставщик встроенной графики на заказ.

Сроки выпуска Intel Kaby Lake G

После предварительного анонса в январе 2018 г. (еще до CES), мы не рассчитывали увидеть ноутбуки, раскручивающие новые гибридные чипы Intel/AMD, до весны этого года. В общем, мы полагали, что конец марта – это очень оптимистичный срок начала выпуска для любых машин, где могут применяться процессоры Kaby Lake G / Vega M.

У Intel есть собственный мини-компьютер NUC Hades Canyon, оснащенный графикой Vega M GH, который они собираются выпустить на рынок в конце марта, и мы сомневаемся, что найдется много производителей ноутбуков, которые могли бы опередить Intel по части заготовок с графикой Vega M. Хотя мы знаем, что Dell и HP точно планируют выпускать системы с новыми чипами.

Когда мы наконец сможем пощупать руками живые ноутбуки с графикой Vega M GH – зависит от конкретных производителей. Intel с определенностью говорит только о мощности 100 Вт применительно к настольному мини-компьютеру NUC, но мы уже почти не надеемся увидеть, как все 1536 ядер GCN будут работать в компактном игровом ноутбуке, способном на разрешение 1080p и частоту кадров 60 fps.

Спецификации Intel Kaby Lake G

На этом рисунке показана часть нового процессора Intel от AMD – довольно интересная штука. Как вы сами можете догадаться, говорить про компоненты CPU скучно – там везде используется страшно унылая архитектура Kaby Lake с 14-нм техпроцессом. Для этого, вероятно, требуется соответствующее настроение + знание внутренней кухни, но меня все больше и больше утомляют попытки Intel в каждом релизе представлять одну и ту же архитектуру как что-то новое.

Это подразумевает всё те же четыре ядра и восемь потоков по всем направлениям, без каких-либо сногсшибательных шестиядерных решений, которые приведут в восторг мобильный рынок, когда они в конце концов выпустят серию Intel Coffee Lake-H где-то через год.

Тем не менее, некоторый интерес представляет чип Intel Core i5 с поддержкой HyperThreading и собственными восемью потоками. Это отличает его от большинства процессоров Core i5, а единственная разница между ним и Core i7 состоит в том, что он имеет немного более низкую тактовую частоту и меньший общий объем кэша.

Но, как я уже сказал, мы сейчас рассматриваем действительно интересный графический чип Vega M, который предлагается в двух различных вариантах: Vega M GH и Vega M GL, что означает соответственно высокий (Vega M Graphics High) и низкий (Vega M Graphics Low) уровень графики.

Графический компонент топ-уровня Vega M GH в серии G используется только в чипах с Core i7 и имеет полный комплект из 24 вычислительных блоков (CU, Compute Unit). Каждый CU включает в себя 64 ядра GCN, то есть в общей сложности GPU содержит 1536 ядер. Частоты этого GPU – и базовая, и Turbo – естественно, намного ниже, чем у аналогичных графических процессоров Vega для настольных ПК, но, тем не менее, выход на тактовую частоту 1200 МГц – это очень приличный результат для чипа с пониженным энергопотреблением, дающего при этом 100 Вт TDP.

Процессоры Vega M GL включают в себя 20 CU, то есть содержат в общей сложности 1280 ядер GCN. Для сравнения – это на 256 ядер больше, чем в графическом процессоре RX 560 Polaris. Поскольку эти чипы дают 65 Вт TDP, значения их тактовых частот, естественно, будут ниже – в режиме Turbo они выходят на отметку только 1 ГГц.

Кроме того, похоже, судя по спецификациям, что чипы GL, предлагающие производительность 32 пикселя за такт, имеют вдвое меньше блоков растровых операций (ROP, Render OutPut unit) по сравнению с чипами GH, которые предлагают 64 пикселя за такт. Этот показатель имеет наибольшее значение, когда речь идет о постобработке (post-processing) и сглаживании (anti-aliasing) – возможно, эти настройки надо будет немного снизить, если вы будете играть на машине с графическим процессором Vega M GL.

Что касается памяти, то все чипы серии G имеют 4 ГБ памяти поколения HBM2 (High-Bandwidth Memory – память с высокой пропускной способностью), которая подключена непосредственно к GPU.

Также в серии G присутствует один разблокированный чип – Core i7 8809G, который недавно появился в списке разблокированных процессоров Intel, так что тут нет ничего удивительного.

Это значит, что с Core i7 8809G вы, счастливчики, сможете пользоваться обоими приложениями для оверклокинга – WattMan от AMD и XTU от Intel. А так как разблокирован весь чип, то вы получаете доступ к продвинутым настройкам CPU, GPU и памяти HBM2. Однако, остальные четыре процессора серии G полностью заблокированы. Возможно, это говорит о том, что 8809G останется переходным чипом для настольных мини-ПК, таких как NUC Hades Canyon, и не пойдет в ноутбуки серии G с графикой высокого уровня Vega M GH.

Два чипа – i7 8809G и 8709G – предназначены для мини-компьютеров NUC Hades Canyon, которые Джон Десридж (John Deatherage), директор по маркетингу направления Intel NUC, на недавнем брифинге назвал “машиной виртуальной реальности Intel”. Теперь вы понимаете, почему эти компьютеры получили наименование Hades Canyon (каньон Аида), раз их директор по маркетингу носит имя DEATHeRAGE, располагающее к стремлению в подземное царство теней…

Это будут удивительно мощные компактные машины, однако заявление, что в части графики они смогут удовлетворять всем требованиям, которые предъявляет VR-гейминг, будет некоторым преувеличением. Я понимаю, что планка требований к графическому процессору у NUC несколько снижена, но думаю, что вам пришлось бы изрядно потрудиться, чтобы запустить на NUC Fallout 4 VR в соответствии со всеми требованиями к игровому процессу.

Архитектура Intel Kaby Lake G

Основы архитектуры новых чипов Kaby Lake G с графикой Vega M хорошо известны уже сейчас, за исключением сложностей, связанных со встроенным мостом EMIB (Embedded Multi-die Interconnect Bridge).

Архитектуре CPU Kaby Lake уже больше года – в январе прошлого года мы представляли ее в результатах наших тестов. К тому же она практически идентична 14-нм архитектуре Skylake, которая вышла в 2015 г. Но, как я уже сказал, это в порядке вещей…

По правде говоря, архитектура GPU AMD Vega с момента своего выхода в прошлом году тоже успела стать вполне понятной. Ее ключевые особенности – это технология RPM (Rapid Packed Math) и контроллер HBCC (High Bandwidth Cache Controller). RPM по сути позволяет графическому процессору выполнять две математические инструкции за время одной, хотя и с небольшой потерей точности. Но в играх это не является проблемой, поскольку там не требуется 32-битная точность вычислений, в отличие от профессиональной обработки данных.

Компонент HBCC позволяет GPU использовать часть системной памяти в качестве расширенного фреймового буфера, что может пригодиться, когда у вас в процессоре с Vega M только 4 ГБ видеопамяти. Этот высокоскоростной контроллер памяти оказывается кстати, когда 4 ГБ памяти HBM2 не хватает. Наличие 1024-битной шины памяти предполагает высокую пропускную способность: 205 и 179 ГБ/с у чипов GH и GL соответственно.

С графическим процессором Vega вы также получаете доступ ко всем новинкам AMD в части программного обеспечения. Последнее обновление AMD Adrenalin – лучший драйвер из числа тех, которые они выпустили в обозримом прошлом. Для этой разновидности мобильных чипов отлично подходит технология Radeon Chill, позволяющая предельно минимизировать затраты энергии, и, следовательно, экономить заряд батарей во время игры. А также вы сможете пользоваться технологиями FreeSync и FreeSync 2.

Но, возможно, самое интересное в этой разработке – то, каким образом в Intel собрали все это вместе. Они целиком заказали у AMD специально модифицированный графический процессор Vega, но для подключения к нему HBM2 использовали свою собственную схему EMIB. Метод EMIB, который Intel представила в прошлом году, позволяет связывать воедино различные архитектуры и микросхемы с помощью моста с высокой пропускной способностью.

Однако они не стали применять технологию EMIB для подключения GPU Vega к CPU Intel Core. Это соединение осуществляется весьма традиционным способом - с помощью восьми линий PCIe 3.0 (PCIe 3.0 8х), в то время как другие восемь линий оставлены для подключения к CPU накопителя на базе PCIe.

Это как раз тот пункт, который AMD могла бы выполнить лучше Intel, если вспомнить их собственный вариант встроенной графики в мобильных APU Ryzen. Применение AMD собственной внутренней шины Infinity Fabric для соединения CPU и GPU в одном чипе следует считать более удачным техническим решением по сравнению с компоновкой Intel Vega M, которая все-таки по существу является простой комбинацией дискретных чипов GPU и CPU, а не высокоэффективным единым чипом. Будет ли AMD самостоятельно выпускать что-либо более масштабное, чем мобильные процессоры Ryzen? Вероятнее всего, нет – ни с таким числом ядер GCN, каким может похвастаться модифицированный GPU Vega M, ни с видеопамятью HBM2.

Но Intel скорей всего стала бы отстаивать свою схему динамического распределения питания, основанную на программном обеспечении, обращая внимание на разницу в эффективности двух разных подходов – "красной" и "голубой" команды – к использованию графики Vega в мобильных формах. Intel утверждает, что технология Dynamic Tuning почти на 20% эффективнее.

Vega также включает в себя систему подвода питания к каждому CU, которая позволяет графическому процессору выключать целые кластеры ядер GCN, если они в данный момент не используются. И, поскольку серия G базируется на мобильных компонентах Kaby Lake-H, вы также получите графику Intel HD – на те случаи, когда вам не нужна высокая производительность графики Radeon и вас устроит качественный средний уровень. Хотя я думаю, что Intel слегка преувеличивает, говоря, что серия G укомплектована “двумя изумительными графическими подсистемами.”

Производительность Intel Kaby Lake G

Нам придется характеризовать производительность чипов Kaby Lake G со слов Intel, так как реальные машины, которые могли бы продемонстрировать нам новые процессоры, пока не поступили на наши испытательные стенды. Надеемся, что к тому времени у нас будет и более широкий выбор ноутбуков AMD Ryzen Mobile для сравнительного тестирования.

И, кто знает – возможно, Nvidia также выпустит в конце марта комплектующие для ноутбуков на базе архитектуры Volta. Да, я сам в себе сомневаюсь…

Тем не менее, результаты составленной Intel подборки тестов показывают, что топовые компоненты Vega M серии G для ноутбуков способны превзойти GTX 1060 Max-Q в среднем на 10%, предлагая 60 fps на разрешении 1080p с высокими настройками. Это действительно впечатляет, даже с учетом того факта, что чипы Max-Q Design в принципе работают примерно на 10% медленнее, чем стандартные мобильные видеокарты Nvidia. Таким образом, можно говорить о том, что графика Vega M GH потенциально соответствует уровню производительности, который мы в настоящее время видим в игровых ноутбуках ценой от $1500.

А теперь представьте, сколько будут стоить ноутбуки с процессорами Kaby Lake G…

Будет ли этой производительности достаточно для того, чтобы NUC Hades Canyon с графикой Vega M GH мог реально претендовать на настоящий VR-гейминг, – надо еще посмотреть. Хоть они и называют его машиной виртуальной реальности, но вам, вероятно, придется поработать с NUC над тем, чтобы получить в VR-играх достаточно гладкий игровой процесс с приличными характеристиками, – но не затем, чтобы забыть про ланч и/или чувство собственного достоинства.

Чип с Vega GL оказался даже более удачным, если говорить о сравнении его с соответствующим компонентом от Nvidia: тесты Intel показывают, что его производительность превосходит производительность мобильного чипа Nvidia GTX 1050 на 30-40%. Понятно, что Intel демонстрирует результаты, соответствующие наиболее оптимистичному сценарию, но они все равно впечатляют.

Результаты сравнения с GTX 1050 Ti не были представлены, зато известно, что TDP графического процессора Vega M GL – 65 Вт – почти не отличается от суммарного TDP (GPU + CPU), что понятно. С графикой Vega M GL вы вряд ли получите 60fps на разрешении 1080p с высокими настройками, но даже выход на отметку 40fps будет вполне достойным результатом. Это средние показатели, но не менее интересно будет отметить минимальные значения частоты кадров и времени отрисовки одного кадра у обоих чипов Vega M серии G.