Нужны ли два вентилятора на процессоре. Конструируем систему охлаждения компьютера. Принцип действия и особенности кулеров для воды

Это собственная разработка компании. Вентиляторы со 112-мм крыльчаткой оснащены PWM-управлением, благодаря которому могут изменять свою скорость в диапазоне от 800 до 1800 об/мин, создавая воздушный поток 23,0-68,5 CFM, статическое давление 0,39-2,07 мм H 2 O и уровень шума 21,9-27,6 дБА.

Под металлической накладкой на 41-мм статоре вентиляторов скрыт фирменный подшипник UFB (Updraft Floating Balance) с заявленным сроком службы 150 000 часов, или более 12 лет непрерывной работы.

Электрические характеристики «вертушек» также на уровне: по результатам наших измерений, каждый вентилятор потребляет не более 1,8 Вт и стартует с 4 В. Длина четырёхпроводных кабелей в оплётке составляет 400 мм.

В качестве антивибрационных демпферов используются силиконовые кольца, вставленные в отверстия крепления вентиляторов, а само закрепление осуществляется с помощью проволочных скоб и пластиковых гвоздиков с отверстиями под эти скобы.


Главное — правильно установить вентиляторы на радиатор, чтобы один из них работал на вдув, а второй — на выдув воздушного потока из радиатора.


Что касается процедуры установки, то в полной мере универсальный Phanteks PH-TC12DX закрепляется на процессоре конструктива LGA2011 достаточно быстро и всего лишь с использованием одной крестовой отвёртки. Но сначала в отверстия крепления вворачиваются опорные шпильки с резьбой.


А уже затем к направляющим, привёрнутым к этим шпилькам, прижимной планкой с двумя подпружиненными винтами притягивается кулер .

Усилие прижима очень высокое, так что радиатор не смещается и не поворачивается на процессоре.

В плане совместимости с высокими радиаторами на памяти или силовых элементах ситуация двоякая. Казалось бы, расстояние от платы до нижнего края вентиляторов составляет 48 мм, чего недостаточно для модных в последнее время модулей памяти с гребенчатыми радиаторами.


Однако напомним, что кулер сравнительно узкий, поэтому если он и заблокирует слоты памяти, то лишь один-два ближайших к процессорному разъёму — и не более того.

По высоте Phanteks PH-TC12DX разместится даже в сравнительно узких корпусах, поскольку после установки на процессор он оказывается не выше 165 мм.

Посмотрим, чем новым нас порадует сегодняшний конкурент Phanteks PH-TC12DX.

⇡ Thermaltake NiC C5 (CLP0608)

Как мы уже упоминали во введении сегодняшней статьи, компания Thermaltake выпустила сразу четыре кулера новой линейки NiC. Модель C5 (CLP0608) — старшая и самая дорогая из них. Серия кулеров серии NiC (Non-interference Cooler — в дословном переводе «не препятствующий кулер») разработана специально для систем с модулями памяти, оснащёнными высокими радиаторами, которые в последнее время стали весьма популярными.

Коробка, выполненная из плотного картона, не менее информативна, чем у Phanteks. Здесь и технические характеристики, и описание ключевых особенностей с фотографиями, и перечень поддерживаемых платформ.

Внутри картонной коробки находятся мягкие полиуретановые вставки по форме кулера, в которых он зафиксирован. Аксессуары запечатаны в отдельную коробку. В их числе стальные направляющие и комплект креплений, пластиковая усилительная пластина, а также инструкции и термопаста.

Стоит Thermaltake NiC C5 на 5 долларов США больше, чем Phanteks, то есть 55 долларов США. На систему охлаждения предоставляется трёхлетняя гарантия. Страна производства — Китай.

Thermaltake NiC C5 — яркий и броский кулер средних размеров. Красные рамки вентиляторов контрастируют с чёрными крыльчатками и чёрными пластиковыми «скорлупами», которыми закрыт радиатор.


На такой кулер просто нельзя не обратить внимание. Его высота равна 160 мм, ширина — 148 мм, а толщина всего 93 мм, что действительно немного для кулера с двумя вентиляторами.

Вентиляторы установлены на вдув-выдув и закреплены в пластиковых оболочках, которые оставляют открытыми боковые стороны радиатора…

…а также его верх и низ в зонах тепловых трубок.


Сам радиатор набран 52 алюминиевыми пластинами толщиной 0,4 мм, напрессованными на тепловые трубки с межрёберным расстоянием 1,7 мм.


Площадь такого радиатора чуточку больше, чем у Phanteks PH-TC12DX, — она составляет 5780 см 2 .

Пять шестимиллиметровых никелированных тепловых трубок припаяны к основанию в желобках, в которых уложены без зазоров.

Медная никелированная пластина размерами 40х40 мм и минимальной толщиной 1,5 мм (под трубками) идеально отполирована.

Однако, в отличие от основания Phanteks, её ровность оставляет желать лучшего. Выпуклость по центру основания не преминула сказаться на полноценности контакта радиатора кулера и теплораспределителя процессора.


Два вентилятора типоразмера 120х120х25 мм вращаются синхронно и оснащены регулятором скорости.

Он установлен на коротком кабеле, отходящем от трёхконтактного разъёма для подключения вентиляторов к материнской плате.

На наш взгляд, такой способ регулировки неудобен, так как для изменения скорости вращения вентиляторов каждый раз придётся открывать корпус системного блока. Что касается самих вентиляторов, то они интересны формой лопастей, состоящих из двух парусообразных половинок.

В описании Thermaltake NiC C5 данное решение никак не поясняется, что странно, ведь маркетологи так любят подобные «фичи». На наш взгляд, такими лопасти выполнены для повышения давления воздушного потока, прокачиваемого между рёбрами радиатора, ведь он у NiC C5 получился сравнительно плотный.

Скорость вентиляторов можно регулировать в диапазоне от 1000 до 2000 об/мин. Максимальный воздушный поток заявлен на отметке 99,1 CFM, статическое давление — 2,99 мм H 2 O, а уровень шума должен изменяться в диапазоне от 20 до 39,9 дБА.

На наклейке 40-мм статора приведено название модели вентилятора и его электрические характеристики.

При заявленных в характеристиках 3,8 Вт для каждой «вертушки» один вентилятор потреблял чуть больше 4 Вт, что вдвое больше, чем у Phanteks. А вот стартовое напряжение оказалось немного ниже — 3,8 В. Длина кабеля — 300 мм. Подшипник обычный — скольжения, с нормативным сроком службы 40 000 часов, или более 4,6 года непрерывной работы.

Процедура установки NiC C5 подробно изложена в инструкции , но в нашем случае — для платформы с разъёмом LGA2011 — она ничем не отличается от установки Phanteks PH-TC12DX.


После установки на плату расстояние до нижней границы Thermaltake NiC C5 составляет всего 36 мм.


Однако, как мы уже упоминали выше, он у же, чем большинство других кулеров с двумя вентиляторами, поэтому вряд ли помешает установке модулей оперативной памяти с высокими радиаторами.

По высоте Thermaltake выше Phanteks всего на 3 мм, поэтому, скорее всего, также без проблем разместится в узких корпусах системных блоков.

Ну а выглядит он, на наш взгляд, более привлекательно. Впрочем, на вкус и цвет, как говорится…

⇡ Тестовая конфигурация, инструментарий и методика тестирования

Тестирование систем охлаждения было проведено в закрытом корпусе системного блока следующей конфигурации:

  • Системная плата: Intel Siler DX79SR (Intel X79 Express, LGA2011, BIOS 0559 от 05.03.2013);
  • Центральный процессор: Intel Core i7-3970X Extreme Edition 3,5-4,0 ГГц (Sandy Bridge-E, C2, 1,1 В, 6x256 Kбайт L2, 15 Мбайт L3);
  • Термоинтерфейс: ARCTIC MX-4 ;
  • Оперативная память: DDR3 4x8 Гбайт G.SKILL TridentX F3-2133C9Q-32GTX (2133 МГц, 9-11-11-31, 1,6 В);
  • Видеокарта: AMD Radeon HD 7770 GHz Edition 1 Гбайт GDDR5 128 бит 1000/4500 МГц (с пассивным медным радиатором кулера Deepcool V4000);
  • Системный диск: SSD 256 Гбайт Crucial m4 (SATA-III, CT256M4SSD2, BIOS v0009);
  • Диск для программ и игр: Western Digital VelociRaptor (SATA-II, 300 Гбайт, 10000 об/мин, 16 Мбайт, NCQ) в коробке Scythe Quiet Drive 3,5″;
  • Архивный диск: Samsung Ecogreen F4 HD204UI (SATA-II, 2 Тбайт, 5400 об/мин, 32 Мбайт, NCQ);
  • Корпус: Antec Twelve Hundred (передняя стенка — три Noiseblocker NB-Multiframe S-Series MF12-S2 на 1020 об/мин; задняя — два Noiseblocker NB-BlackSilentPRO PL-1 на 1020 об/мин; верхняя — штатный 200-мм вентилятор на 400 об/мин);
  • Панель управления и мониторинга: Zalman ZM-MFC3 ;
  • Блок питания: Corsair AX1200i (1200 Вт), 120-мм вентилятор.

Для проведения базовых тестов шестиядерный процессор на опорной частоте 100 МГц при фиксированном в значении 44 множителе и активированной функции Load-Line Calibration был разогнан до 4,4 ГГц с повышением напряжения в BIOS материнской платы до 1,245~1,250 В . Технология Turbo Boost во время тестирования была выключена, а вот Hyper-Threading для повышения тепловыделения была активирована. Напряжение модулей оперативной памяти было зафиксировано на отметке 1,6 В, а её частота составляла 2,133 ГГц с таймингами 9-11-11-31. Прочие параметры BIOS, относящиеся к разгону процессора или оперативной памяти, не изменялись.

Тестирование проведено в операционной системе Microsoft Windows 7 Ultimate x64 SP1. Программное обеспечение, использованное для теста, следующее:

  • LinX AVX Edition v0.6.4 — для создания нагрузки на процессор (объём выделенной памяти — 4500 Мбайт, Problem Size — 24234, два цикла по 11 минут);
  • Real Temp GT v3.70 — для мониторинга температуры ядер процессора;
  • Intel Extreme Tuning Utility v4.0.6.102 — для мониторинга и визуального контроля всех параметров системы при разгоне.

Полный снимок экрана во время проведения одного из циклов тестирования выглядит так:

Нагрузка на процессор создавалась двумя последовательными циклами LinX AVX с указанными выше настройками. На стабилизацию температуры процессора между циклами отводилось 8-10 минут. За окончательный результат, который вы увидите на диаграмме, принята максимальная температура самого горячего из шести ядер центрального процессора в пике нагрузки и в режиме простоя. Кроме того, в отдельной таблице будут приведены температуры всех ядер процессора и их усреднённые значения. Комнатная температура контролировалась установленным рядом с системным блоком электронным термометром с точностью измерений 0,1 °C и возможностью почасового мониторинга изменения температуры в помещении за последние 6 часов. Во время данного тестирования температура окружения была нетипично высокой, поскольку за окном установилась летняя жара, — она колебалась в диапазоне 27,6-28,0 °C.

Измерение уровня шума систем охлаждения осуществлялось с помощью электронного шумомера CENTER-321 в период от одного до трёх часов ночи в полностью закрытой комнате площадью около 20 м 2 со стеклопакетами. Уровень шума измерялся вне корпуса системного блока, когда источником шума в комнате являлся только сам кулер и его вентилятор. Шумомер, зафиксированный на штативе, всегда располагался строго в одной точке на расстоянии ровно 150 мм от статора вентилятора. Системы охлаждения размещались на самом углу стола на пенополиуретановой подложке. Нижняя граница измерений шумомера составляет 29,8 дБА, а субъективно комфортный (просьба не путать с низким!) уровень шума кулеров при измерениях с такого расстояния находится около отметки 36 дБА. Скорость вращения вентиляторов изменялась во всём диапазоне их работы с помощью специального контроллера путём изменения питающего напряжения с шагом 0,5 В.Результаты тестирования и их анализ

Эффективность охлаждения

Результаты тестирования эффективности систем охлаждения представлены в таблице и на диаграмме:

Прямо сказать, обе новинки не впечатлили нас своей эффективностью. Thermaltake NiC C5 способен продемонстрировать такую же эффективность, как и легендарный Thermalright TRUE Spirit 140, однако только при высоких скоростях двух своих вентиляторов и, естественно, уступая TRUE Spirit 140 в уровне шума. При тихих 800 об/мин эффективность NiC C5 достаточно посредственна — в этом режиме он проигрывает TRUE Spirit 140 сразу 4 градуса Цельсия по пиковой температуре процессора. Что касается Phanteks PH-TC12DX, то, в отличие от своего старшего брата, это ещё менее эффективная система охлаждения. К примеру, при максимальной скорости двух своих вентиляторов Phanteks демонстрирует такую же эффективность, как и более дешёвый TRUE Spirit 140 с одним вентилятором при 800 об/мин. А на 800 об/мин PH-TC12DX и вовсе не справился с охлаждением разогнанного процессора, как, впрочем, и при 1000 об/мин. Мы понимаем, что окружающая температура во время этих тестов была сравнительно высокой, однако и на сводной диаграмме, где все результаты приводятся к температуре окружения 25 градусов Цельсия, Phanteks PH-TC12DX и Thermaltake NiC C5 не блещут эффективностью. К ней мы и переходим сейчас.

Внесём полученные результаты в сводную таблицу* и на диаграмму, где все протестированные кулеры представлены в их штатных комплектациях в тихом режиме работы и при максимальных оборотах вентилятора(ов) при разгоне процессора до 4,4 ГГц и напряжении 1,245~1,250 В:

* Пиковая температура самого горячего ядра процессора отражена на диаграмме с учётом дельты от комнатной температуры и для всех систем охлаждения приведена к 25 градусам Цельсия.

Thermaltake NiC C5 при максимальных оборотах двух вентиляторов смог занять своё место в средней группе кулеров, но его уровень шума в ней самый высокий. В тихом режиме при 800 об/мин данная модель всего лишь четвёртая с конца. В свою очередь, ещё менее эффективный Phanteks PH-TC12DX лидирует в третьей группе кулеров, правда только по уровню шума, а в эффективности проигрывает Noctua NH-U14S и всё тому же Thermalright TRUE Spirit 140 при 800 об/мин. Да еще и с колоссальной разницей в уровне шума.

Логично, что при такой эффективности говорить о дальнейшем разгоне процессора при охлаждении его посредством Phanteks PH-TC12DX бессмысленно, а вот Thermaltake NiC C5 позволил Intel Core i7-3970X Extreme Edition сохранять стабильность на частоте 4600 МГц при напряжении 1,3 В и пиковой температуре наиболее горячего ядра 84 градуса Цельсия:

Таким образом, если не обращать внимания на высокий уровень шума, Thermaltake NiC C5 в нашей «Табели о рангах» с максимальным разгоном процессора выглядит вполне себе уверенно.

Ну а Phanteks PH-TC12DX лидирует в тройке кулеров с базовым разгоном процессора, уступая двум собратьям по несчастью — Deepcool Ice Blade Pro и Noctua NH-U12S — по уровню шума. К оценке и анализу последнего мы сейчас и переходим.

Уровень шума

Уровень шума участников нашего сегодняшнего тестирования был измерен во всём диапазоне работы их вентиляторов по изложенной в соответствующем разделе статьи методике и представлен на графике:

Если кратко, обе новинки шумные. Дело не столько в значительном проигрыше по сравнению с Thermalright TRUE Spirit 140 с одним вентилятором, сколько в самих шумных парах вентиляторов Phanteks PH-TC12DX и Thermaltake NiC C5. В особенности это касается модели Thermaltake, которая выделяется не только характерным резонансом работы вентиляторов, установленных на вдув и выдув, но и неравномерностью изменения их шума в зависимости от скорости, что хорошо видно по ломаной кривой. Phanteks PH-TC12DX в этом плане выглядит предпочтительнее, он остаётся комфортным при скорости вентиляторов около 950 об/мин, в то время как Thermaltake NiC C5 комфортен при 890 об/мин. Тихими обе новинки можно назвать, только если скорость их вентиляторов не превышает 800 об/мин.

⇡ Заключение

Оба новых двухвентиляторных кулера, которые мы сегодня изучили и протестировали, не смогли нас порадовать ни выдающейся эффективностью, ни низким уровнем шума. Thermaltake NiC C5 из этой пары эффективнее, но смотрится достаточно бледно в сравнении с массой других воздушных кулеров, в том числе и более доступных по стоимости. Phanteks PH-TC12DX тише, но действительно тих лишь при скорости, когда даже с умеренным разгоном шестиядерного процессора справиться он уже не может. У Thermaltake NiC C5 вентиляторы оснащены ручным бесступенчатым регулятором на коротком и неудобном кабеле, а у Phanteks PH-TC12DX — PWM-управлением. Также из различий отметим зеркальное основание у Thermaltake, небольшую разницу в стоимости, более долговечные и экономичные вентиляторы, а также на 7 мм более высокую посадку над платой в пользу Phanteks. В остальном эти кулеры одинаковы. Они универсальны, просты в установке, и каждый из них по-своему привлекательно выглядит. Но достаточно ли этих плюсов и выберете ли вы один из них для охлаждения процессора — решать только вам.

Нахождение оптимальных мест расстановки вентиляторов в данном корпусе.
Старался для себя. Чтобы данные не пропадали, оформил в статью.
Картинки вымышленные из интернета (своих фоток нет).
Идею эксперимента черпанул отсюда .

Таблица результатов.

Со списком железа, софта и мест установки вентиляторов.
(внизу страницы таблица прикреплена в немного большем масштабе)

Текстовое описание

Внешний вид корпуса
Кулер Noctua NH-D14
С одним NF-P12, на продув сквозь обе башни. Термопаста Zalman STG-2

Варианты с вертикальным расположением кулера CPU


Изначально было два вентилятора.
Noctua NF-P12 и Cooler Master A12025 (далее по тексту СМ).
Поставил P12 на выдув из задней стенки, а СМ на вдув через дно.

Потом старался подобрать такую нагрузку, чтобы при LinX + Kombustor система если не зашивалась, то заметно перегревалась.

Вывести CPU к 90С было несложно.
Стабильный load 100%, 3.5GHz.
А вот частота ядра видеокарты дергается при одновременном запуске LinX + Kombustor (сам Kombustor давит очень спокойно). Ну, да ладно. Докинул ядру GPU +100MHz в MSI Afterburner, чтобы грелось и получил те 76,4С/88,6С ядро/VRM при 1921 оборотах кулеров видеокарты.

Принял настройки LinX и частоты CPU, GPU в этом варианте как отправные (точку отсчета), и больше параметры не менял. Этот вариант тестировал до 7-ми удачных раз, чтобы набить статистику и пока сам понял, в каких диапазонах подгуливает разогретая система. Иногда видеоадаптер выдавал из своих запасников какое-то перевозбужденное порно. Такие данные отбрасывал, с остальных брал среднее, округлял до десятых. Поэтому в таблице значения с запятой.

У блока питания - забор снизу, выхлоп сзади. Работает тихо. Протягивать через него теплый корпусный воздух не счел целесообразным, поэтому БП не переворачивал. Хотелось бы знать его температуру и обороты, но нечем подступится, проги мониторинга данные этого БП не берут, не показывают:(

Это был самый жаркий, показательный вариант (всего с 2-мя вентелями). Дальше - прохладнее.


Появился еще один Noctua NF-P12.
Поставил его классическим способом на вдув на фронтальной (передней) панели выше, а СМ ниже.

Одна из стенок для жестких дисков снята.
И потоку P12 мешала только вторая несъемная стенка с большими овальными отверстиями.

Внизу СМ вступил в лобовую схватку с HDD и SSD. Все его 1200 оборотов ушли на завоевание лучшего показателя температуры HDD для этого варианта.

СМ бросил HDD и обосновался на боковой стенке (в левом установочном месте). Его диаметр где-то на четверть перекрыт внизу БП. Дует на мат.плату, отчего она похолодела MB -5C, PCH -4C.
HDD обиделся и нагрелся на +2С.
Видеокарта предпочитает молчать.

- - - - - - - - - - - - - - - - - - - - - -

СМ сдвинулся на правое установочное место по стенке корпуса.
MB набрала +4C, PCH тоже +0,8C

.
- - - - - - - - - - - - - - - - - - - - - -

Вентиль NF-P12 тоже перебрался на бок, слева от СМ.
Вдвоем с боковины ребята вдули куда сильнее, чем будучи в загоне лабиринтов передней панели.
Так, в сравнении с вариантом A-2/1-a : мамка остыла на -4,3С; PCH на все -10,8С;
даже видяха с VRM сказали -2,7С и -2,3С.

Лишенный прямого и кривого обдува HDD психанул на +2,7С, но на его выходки в 31,3С всем естественно побоку.
Он, кстати, тихоня 5400rpm и 38 градусов максимум видел только в самом скупом варианте с 2-мя вентилями.
Хотя и бешеных задач по чтению/записи ему и не ставили, причин греться небыло.
- - - - - - - - - - - - - - - - - - - - - -

Буйная головушка подбила шальные ручки всунуть 2 листа А4 от низа вентилей на боковине - аж под слот видяхи, по всей ее ширине. Дескать, так весь воздух, вкаченный двумя 120-ками будет по направляющей, без потерь подпирать обе штатных вертушки видеокарты.

Мамка скинула градус. PCH набрал +7,4С видимо, лист бумаги направил поток мимо него.
HDD еще вставил свои +1,7С.

Видяхино достижение в -0,5С не стоит такого «моддинга».
- - - - - - - - - - - - - - - - - - - - - -

Вспомнил, что верхнюю крышку успел заклеить скотчем (от пыли). Как и все щели внутри корпуса после покупки.
Снял скотч с крышки, осталась металлическая сетка с отверстиями 2мм.

Помогло. За счет конвекции через крышку. Рукой ощущается выход теплого воздуха.
Наконец-то пришел в движение CPU, правда всего на -0,8С. Мамка тоже градус сбросила. PCH на -6,8С облегчился.

- - - - - - - - - - - - - - - - - - - - - -

Отделил от крышки мет.сетку. Остался каркас с крупными отверстиями в виде сот 21х23мм.

И все компоненты еще дружно сбросили от -0,6 до -1,5 градуса.

Так, в этом варианте самые холодные показатели CPU, MB, и GPU. И свободная дыхачка через верх имеет смысл.

.
- - - - - - - - - - - - - - - - - - - - - -

Кстати, CPU заметно реагирует только на подвижки в верхней части корпуса, а видеокарта - на перестановки в
нижней половине. Кирпич видяхи как раз и делит корпус на 2 фронта, верхний и нижний.

Еще одна шальная мысль - организовать воздуховод/кожух, по которому протяжка воздуха через кулер CPU будет изолирована, без рассеивания горячего воздуха на башнях.

Всем сразу стало плохо. От +4,1С на CPU, до +1,1GPU.

Варианты с горизонтальным расположением кулера CPU


Собственно, мечта. Развернуть башни на выдув через крышу. Читал, что так будет окэй всего.
Окэй начал трещать сразу же. Пока развернул только кулер, а вытяжной NF-P12 на задней стенке оставил.
Сравниваем, например, с вариантом-победителем A-2/1-g (конвекция через соты в крышке). Проц удавился и набрал +11,4С, остальное несущественно. Разве что VRM улыбается. Это наверное у него башенный вентиль -2,5 градуса отсосал. Вентиль этот просто впритирочку между крышкой видеокарты и башней своего кулера - задыхается, качать нечего.

- - - - - - - - - - - - - - - - - - - - - -

NF-P12 с задней панели бросился на крышу, над башнями радиатора - вытягивать мечту. Вытягивать через
перфорацию 2мм. Отверстия-соты на крышке мне не по душе, поэтому мет.сетку снимал только для теста в одном
варианте (A-2/1-g ). Перфорацию на задней стенке (теперь без вентиля) заклеил скотчем.

Такой маневр снял с CPU всего -1,3С, что до лампочки. Видеокарта со своим VRM чего-то недопоняли и прибавили +1,3 и 2 градуса соответственно. Мамке на градус жарче стало. Ну ладно, еще один козырь в кармане.
- - - - - - - - - - - - - - - - - - - - - -

На кулере CPU, вентиль NF-P12 убираем с крышки видеокарты и ставим внутрь, между башен радиатора.
Отсюда он качает намного лучше.

По сравнению с прежним вариантом: спасает проц на -7,8С.
Правда, перестает сосать VRM, который набрал свои +2С.

Итоги

При данном количестве вентиляторов, вариант-победитель A-2/1-g .
А это: 2х120 вдув через боковую стенку, 1х120 выдув сзади.
Ориентация куллера CPU вертикальная (выдув на вентиль задней стенки).
Даёт лучшие результаты температур CPU, MB, GPU.
При этом температуры HDD, PCH и VRM не сильно отстают от конкурентов.

Худший вариант А-1/1 (с двумя вентиляторами вдув-дно/выдув-зад).
Две вертушки, конечно, шпарят слабо. Тем более Cooler Master (СМ) со своим дуновением при 1200rpm не выглядит угрожающе. Сравнивая его рядышком с Noctua NF-P12 на боковой панели, прикрывая рукой отверстия в перфорации - СМ всеравно, а Noctua аж свистел, жадно всасывая воздух. Работая на выдуве с задней стенки, СМ тоже не отличился, поэтому в тестах там постоянно выкачивал NF-P12.

Разница температур между лучшим и худшим вариантами в градусах:
CPU -12,6
MB -13,9
HDD -6,6
PCH -21,2
GPU -17,2
VRM -13,1

Открытый стенд
Корпус без двух боковых стенок, крышки и без всех трёх корпусных вентиляторов.
Вспомнил о нем в самом конце. Думал - скунс моему варианту-победителю.
Но не тут то было.
Как вариант A-2/1-g «гасит» открытый стенд:
CPU +0,9
MB -5,8
HDD -3,8
PCH -11,5
GPU -3,8
VRM -2,5
Похоже компоненты без активного обдува чувствуют себя не так уж комфортно.
Только проц выдохнул, почти 1градус.
- - - - - - - - - - - - - - - - - - - - - - .
Я не спец.тестер да и на системник перешел недавно после 9-ти лет на ноутбуках.
Поэтому, косяков и умозаключений невпопад может хватать. Будьте бдительны.

Благодарю за внимание.

Ближайшая по смыслу тема форума

Bonus


Проверяем два варианта, предложенных Romulus .
A-1/2-a и A-1/2-b

Разворачиваем левый вентиль на боку на выдув.
Тяжелый случай. 4 раза прогонял тест. Такое ощущение, что система от ветра зависит, куда подует, такие и цифры. Обычно, за 3 прогона в разное время получались вполне утрясённые, почти одинаковые значения. А это…

Пришлось морду всунуть поближе к происходящему.
Тут такая фигня. На выходе из боковины воздух сильно распыляется веером на стороны. А рядом втяжной вентиль. И он крадёт часть отработанного выхлопа. Особенно, если в комнате легкий ход воздуха, например от окна, хоть чуть-чуть лижет по боку корпусу, да еще от вытяжного к втяжному - заворот кишок обеспечен. Нестабильный охлад.

GPU 64.3C почти как открытый стенд, хуже было только в варианте с 2-мя ветниляторами.
CPU 80 чуть лучше, чем в «кожуе».


Втяжной с бока кидаем на дно.
Освободившееся от вентилятора место на боку не заклеивал. Зато проверил. Через него идет небольшой подсос воздуха. Тонкий чек из магазина не держит, но пытается, к перфорации слегка подлипает.

Проц 80,3С Что-то ему расколбас нагнетания внизу не нравится, ни в этом варианте, ни в предыдущем. Жарко под крышей, если снизу не вкачивать, что-ли?
Результаты, почты идентичны предыдущему варианту, в пределах 1 градуса.


- Инспектор Петренко. Ваши документы. Нарушаем…
- Чито нарушая насяльника?
- Баланс нарушаем!
- Кислотно-щелочной?
- Нет. Приточно-вытяжной!

Все на выход. Тоесть, обе вертушки на боковине - выхлоп. Вся приточка неофициальная, через щели.
Проц и мамка подтянулись, остальное просело.

CPU 76С. На -1,3С холоднее сомого лучшего результата в таблице. Похоже, если неоптимальные «завороты кишок» внизу корпуса тупо высосать двумя вентилями, то проц себя обеспечит.

MB скинула градус и тоже установила внутритабличный рекорд на данный момент 40,3С Датчик под вытяжку засосало что-ли.
Некрасиво подогрелись HDD 35,8С; РСН 47,1С

GPU 65,8C. Совсем не отличилась. Какой-то конфликт интересов. 2 вертолёта видеокарты гребут себе. А 2х120 тут же рядом, на боковине - выкачивают из корпуса. А жрать видяхе что?

* * *
Итого: расклад A-2/1-g остаётся в почёте, хотя по CPU и MB его слегка обошел A-0/3 .

Четвёртым будешь?

Появился еще один NF-P12.
Взял вариант A-2/1-f (2 сбоку вдув, 1 сзади выдув) и подтыкал этот 4-тый вентиль на дно и фронтальную панель - вдув, и на крышку - выдув.


Из таблицы видно, что эффект есть разве что при установке на дно. Охладились GPU -2.5C, VPM -4.2C, ну и МВ -1,4С.
Спереди нагнетание или сверху вытяжка таким 4-тым вентилятором - до лампочки.

ПредисловиеПо моему скромному мнению, японская Scythe Co., Ltd. является лидером среди компаний, выпускающих воздушные системы охлаждения для центральных процессоров. Чтобы прийти к такому выводу, необходимо оценить её основных конкурентов. К примеру, Thermalright выпускает самые высокоэффективные кулеры, но предлагает их по высоким ценам, при этом не утруждает себя контролем над ровностью оснований, и имеет слаборазвитую дилерскую сеть, из-за чего приобрести её продукцию зачастую попросту невозможно, особенно вдали от крупных городов. У известной всем корейской компании Zalman в области воздушных систем охлаждения, по большому счёту, осталось только громкое имя, заслуженное в самом начале тысячелетия. Thermaltake выпускает неплохие кулеры, но делает это довольно редко, хотя в последнее время эта ситуация и стала выправляться. ZEROtherm и новая ThermoLab - слишком редкие гости на рынке. Cooler Master, пожалуй, на сегодня является самым грозным конкурентом Scythe, так как в его ассортименте имеются как отличные кулеры по соотношению цена/эффективность (Hyper TX 2 и Hyper 212), так и дорогие суперкулеры V8 и V10. Кроме того, совсем скоро появятся ещё две новинки, да и продукция данного бренда широко распространена по всему миру. Кого ещё забыл? Titan, ASUSTek, Noctua и Xigmatek - эти компании также нечасто балуют нас новинками, а их продукты слабо распространены на рынке, за исключением, разве что, Xigmatek, которая выпускает кулеры только с технологией прямого контакта, хорошо работающей не со всеми современными процессорами.

В отличие от конкурентов, продукцию Scythe можно приобрести практически по всему миру, причём, на фоне других брендов, кулеры Scythe выделяются вполне разумными ценами: стоимость её кулеров составляет от одной до двух тысяч рублей , что для продукции такого класса сравнительно немного (для сравнения, больше половины имеющихся в нашем магазине кулеров Thermalright - дороже двух тысяч рублей ). Ассортимент продуктов довольно широк: от аккуратного Katana II и сверхкомпактного Shuriken до гигантского и очень дорогого Orochi . Обновление линеек систем охлаждения происходит с завидным для остальных производителей постоянством. То и дело Scythe анонсирует тот или иной кулер. Из уже выпущенных, но ещё не протестированных нами новинок можно отметить кулеры Katana III (SCKTN-3000), REEVEN (RCCT-0901SP) или KILLER WHALE. Кроме того, в ассортименте компании имеется широкий выбор вентиляторов различных типоразмеров и назначений, а также прочих полезных аксессуаров. Не хватает только одного - кулера, который можно было бы назвать абсолютным лидером среди систем воздушного охлаждения. Но, как оказалось, с выходом Mugen 2 , Scythe успешно ликвидировала и этот пробел.

Первая версия «бесконечности» (а именно так переводится название кулера с английского «Infinity») появилась в далёком по меркам Hi-Tech индустрии 2006 году. В то время кулер Scythe Infinity по эффективности охлаждения был общепризнан ну если уж не лучшим, то одним из лучших. Спустя почти год, на рынок выпустили вторую ревизию Infinity, переименовав в «Mugen» - это слово также означает «бесконечность», только теперь уже в переводе с японского языка. Тогда изменения коснулись лишь вентилятора (была установлена более производительная и лёгкая модель «Slip Stream»). Наконец, в самом начале 2009 года, Scythe выпустила вторую версию кулера Mugen, с принципиально новым радиатором, новым вентилятором и иной системой крепления.

Но - обо всём по-порядку.

Обзор кулера Scythe Mugen 2 (SCMG-2000)

Упаковка и комплектация

Новый кулер запечатан в компактную картонную коробку с изображением системы охлаждения на лицевой стороне:



Scythe Mugen 2 запечатлён парящим в космическом пространстве на фоне Земли, олицетворяя, видимо, ту самую бесконечность. В этом же стиле оформлены и другие стороны коробки, на которых приведено описание ключевых особенностей кулера, технические характеристики, а также перечислены аксессуары комплекта поставки:


В числе последних можно отметить универсальную пластину, комплекты креплений и винтов, термопасту SilMORE, две проволочных скобки для вентилятора и инструкцию по установке кулера на шести языках, включая русский:



Внутри упаковки все компоненты надёжно закреплены, а между секциями радиатора находятся картонные вставки, что сводит риск повреждения устройства во время его транспортировки к минимуму.

Scythe Mugen 2 производится в Тайване, а его рекомендованная стоимость составляет всего 39,5 долларов США. В Москве на момент подготовки статьи кулера в продаже ещё не было.

Особенности конструкции

Новая система охлаждения относится к кулерам башенного типа и имеет габариты 130х100х158 мм при весе вместе с вентилятором 870 граммов. Радиатор выглядит следующим образом:


Он состоит из пяти независимых секций, на каждую из которых приходится по одной тепловой трубке диаметром 6 мм. Таким образом, всего трубок пять. Расстояние между всеми секциями радиатора одинаковое и составляет 2,8 мм:


Собственно, разделение одного сплошного радиатора на пять отдельных секций и является ключевой особенностью Scythe Mugen 2. Японские инженеры именовали эту особенность M.A.P.S. («Multiple Airflow Pass-through Structure»), что в вольном переводе означает «структура для прохождения множественный воздушных потоков». По мнению инженеров Scythe, такой «расчленённый» радиатор будет способствовать не только быстрому оттоку тепла из приграничных к трубкам зон радиатора, но и снижению сопротивления воздушному потоку, повышению эффективности работы каждого отдельного радиатора и кулера в целом. Отдельно указано, что такая структура как нельзя лучше подходит для вентиляторов Scythe серии Slip Stream 120, один из которых и поставляется в комплекте с Mugen 2.

Каждый радиатор состоит из 46 алюминиевых пластин толщиной 0,35 мм с межрёберным расстоянием 2,0 мм:



Ширина трёх центральных секций меньше, чем ширина двух крайних: 22 мм и 25,5 мм, соответственно:



А вот длина пластин радиатора одинакова и составляет 100 мм. Таким образом, площадь радиатора Scythe Mugen 2 составляет около 10,5 тысячи квадратных сантиметров, что заметно больше, чем даже у гигантского Scythe Orochi (примерно 8700 см²), и сравнимо с трёхрадиаторным Cooler Master V10 (также около 10 500 см²).


Добавлю, что концы тепловых трубок закрыты фигурными алюминиевыми колпачками.

В нижней части кулера установлен дополнительный алюминиевый радиатор размерами 80х40 мм, прилегающий к верхней части трубок над основанием:



По всей видимости, он предназначен для снятия тепловой нагрузки с той поверхности трубок, которая находится над основанием и ничем не охлаждается.


Трубки приклеены к основанию термоклеем - желанных желобков мы от Scythe так, видимо, никогда и не дождёмся (кстати, в дополнительном радиаторе желобки как раз имеются). Зато качество обработки медной никелированной пластины находится на самом высоком уровне:



Поверхность пластины ровная, разве что по углам, при проверке ровности линейкой, можно увидеть мизерные щели:


Самое главное, что в зоне контакта основания и теплораспределителя процессора никаких неровностей нет:



Scythe Mugen 2 оснащается девятилопастным вентилятором типоразмера 120х120х25 мм серии Slip Stream 120 модель SY1225SL12LM-P:


Вентилятор основан на подшипнике скольжения с нормативным сроком службы 30 000 часов (более 3 лет непрерывной работы). Скорость вращения вентилятора регулируется методом широтно-импульсной модуляции (PWM) в диапазоне от 0 до 1300 об/мин, воздушный поток при этом может достигать 74,25 CFM. Максимальный уровень шума вентилятора заявлен на отметке 26,5 дБА.



Slip Stream 120 закрепляется на радиаторе с помощью двух проволочных скобок, концы которых вставляются во внешние отверстия рамки вентилятора, а сами скобки защёлкиваются в специальные пазы в радиаторе:



Причём, в общей сложности в радиаторе кулера есть восемь симметрично расположенных пазов, что позволит навесить на радиатор сразу четыре вентилятора:


Правда, для этого вам потребуется еще 3 вентилятора и три дополнительных комплекта креплений .
Как вы понимаете, один комплектный вентилятор можно установить либо вдоль секций, либо поперек:


Максимальная эффективность охлаждения будет достигнута при направлении воздушного потока вдоль секций. Именно такое расположение вентилятора и рекомендуется производителем, поэтому второй вариант возможен только в исключительных случаях, когда по каким-то причинам зацепить вентилятор с одной из широких сторон кулера невозможно.

Поддержка платформ и установка на материнские платы

Scythe Mugen 2 можно установить на все без исключения современные платформы, и даже на уже устаревшую платформу с разъёмом Socket 478. О процедуре установки кулера вам расскажет подробная инструкция , здесь же мы рассмотрим её основные моменты.

Прежде всего, для установки кулера потребуется привернуть к его основанию крепления, соответствующие процессорному разъёму вашей материнской платы:


Socket 478 Socket 754/939/940/AM2(+)/AM3 LGA 775/1366


Далее, схематично процедура установки Scythe Mugen 2 на каждую из платформ выглядит так:


Socket 478 LGA 775 LGA 1366


Socket 754/939/940 Socket AM2(+)/AM3


Как вы видите, во всех случаях новый кулер крепится к пластине на обратной стороне материнской платы, поэтому последнюю придётся вынуть из корпуса системного блока. Наконец-то Scythe отказалась от ненадёжных и выгибающих материнскую плату креплений типа «Push-pin» и оснастила своего флагмана отличными креплениями и универсальной пластиной:


Несмотря на кажущуюся громоздкость, она без каких либо проблем вписалась на обратную сторону материнской платы DFI LANPARTY DK X48-T2RS:



Кстати, в случае установки кулера на материнские платы с разъёмом LGA 1366 стандартную прижимную пластину этих плат нужно будет снять, заменив на пластину из комплекта Mugen 2. Для демонтажа штатной пластины в комплекте с кулером поставляется специальный ключ.

Расстояние от поверхности основания кулера до нижней пластины радиатора равно 41 мм, да и в области основания кулер компактен, поэтому ни тепловые трубки, ни дополнительный радиатор не создали помех при установке системы охлаждения на плату:


Зато возникли проблемы при установке вентилятора на радиатор. Во-первых, пришлось вынуть модуль оперативной памяти из первого слота, так как его высокий радиатор не позволял навесить вентилятор, а во-вторых, одну проволочную скобку внизу так и не удалось зацепить за радиатор, потому что она упиралась в радиатор чипсета материнской платы:



Впрочем, последняя проблема вряд ли сколь либо серьёзна - всё-таки верхний край проволочки в паз зашёл. Что же касается модуля памяти, то потенциальным владельцам Mugen 2 я бы рекомендовал либо приобретать модули без радиаторов, либо заранее удостовериться в совместимости кулера с вентилятором и платы с высокими модулями памяти. В помощь последним добавлю, что расстояние от центральной оси кулера до края широкого радиатора равно 50 мм (и ещё 25 мм нужно добавить на вентилятор).

Внутри корпуса системного блока Scythe Mugen 2 выглядит следующим образом:



Никаких вам подсветок вентиляторов и прочей мишуры. Всё серьёзно.

Технические характеристики

Технические характеристики нового кулера сведены в следующую таблицу:

Тестовая конфигурация, инструментарий и методика тестирования

Эффективность новой системы охлаждения и его конкурента проверялась внутри корпуса системного блока. На открытом стенде тестирование не проводилось и впредь не будет проводиться, так как в сравнении с температурами внутри нового корпуса на низких скоростях вращения вентиляторов разницы с температурами на открытом стенде и вовсе не было зафиксировано, а на высоких скоростях открытый стенд отыграл лишь 1-2 °C, ради которых регулярно перебирать систему уж точно нет никакого смысла.



Конфигурация системного блока во время проведения тестирования не подвергалась каким-либо изменениям и состояла из следующих комплектующих:

Системная плата: DFI LANPARTY DK X48-T2RS (Intel X48, LGA 775, BIOS 03.10.2008);
Центральный процессор: Intel Core 2 Extreme QX9650, (3,0 ГГц, 1,15 В, L2 2 x 6 Мбайт, FSB 333 МГц x 4, Yorkfield, C0);
Термоинтерфейс: Arctic Silver 5;
Оперативная память DDR2:

1 x 1024 Мбайт Corsair Dominator TWIN2X2048-9136C5D (1142 МГц, 5-5-5-18, 2,1 В);
2 x 1024 Мбайт CSX DIABLO CSXO-XAC-1200-2GB-KIT (1200 МГц, 5-5-5-16, 2,4 В);


Видеокарта: ZOTAC GeForce GTX 260 AMP2! Edition 896 Мбайт, 650/1400/2100 МГц (1030 об/мин);
Дисковая подсистема: Western Digital VelociRaptor (SATA-II, 300 Гбайт, 10 000 об/мин, буфер 16 Мбайт, NCQ);
Система охлаждения и звукоизоляции HDD: Scythe Quiet Drive for 3.5" HDD;
Оптический привод: Samsung SH-S183L;
Корпус: Antec Twelve Hundred (штатные 120-мм вентиляторы заменены на четыре Scythe Slip Stream на 800 об/мин, внизу на передней стенке 120-мм Scythe Gentle Typhoon на 800 об/мин, сверху стандартный 200-мм вентилятор на 400 об/мин);
Панель управления и мониторинга: Zalman ZM-MFC2;
Блок питания: Zalman ZM1000-HP 1000 Вт, 140-мм вентилятор;

Все тесты были выполнены под операционной системой Windows Vista Ultimate Edition x86 SP1. Программное обеспечение, использованное во время тестирования, следующее:

Real Temp 3.0 - для мониторинга температуры ядер процессора;
RightMark CPU Clock Utility 2.35.0 - для контроля срабатывания термозащиты процессора (режима пропуска тактов);
Linpack 32-bit в оболочке LinX 0.5.7 - для нагрузки процессора (двойной цикл теста по 20 проходов Linpack в каждом цикле при объёме используемой оперативной памяти 1600 Мбайт);
RivaTuner 2.23 - для визуального контроля за изменением температуры (с плагином RTCore).

Таким образом, полный снимок экрана во время проведения тестирования следующий:



Период стабилизации температуры процессора между циклами тестирования составлял примерно 10 минут. За окончательный результат принималась максимальная температура самого горячего из четырёх ядер центрального процессора.

Комнатная температура контролировалась установленным рядом с корпусом электронным термометром с точностью измерений 0,1 °C и возможностью мониторинга изменения температуры в помещении за последние 6 часов. Во время тестирования комнатная температура колебалась в диапазоне 23,5-24,0 °C.

Пару слов о кулере, с которым мы будем сравнивать Scythe Mugen 2. Говорят, что тепловые трубки этого кулера заполнены газом, доставляемым с одного из спутников Юпитера, и что одна из команд Формулы 1 решила использовать его в сезоне-2009 для охлаждения системы KERS ... Всё, что знаем мы знаем наверняка - его зовут ThermoLab BARAM , и до сих пор он был лучшим кулером среди побывавших в наших руках:



BARAM тестировался с одним и с двумя вентиляторами Scythe Slip Stream 120 на скоростях от 510 до 1860 об/мин. С этими же вентиляторами и в этих же скоростных режимах проверялся Scythe Mugen 2, помимо тестов со штатным вентилятором с ШИМ-управлением.

Результаты тестирования эффективности кулеров

При проведении проверки с помощью Linpack предел разгона 45-нм четырёхъядерного процессора на минимальной скорости вращения вентиляторов кулеров 510 об/мин составил 3,8 ГГц (+26,7 %) при повышении напряжения в BIOS материнской платы до 1,5 В (+30,4 %):


С одним очень тихим вентилятором на 510 об/мин с охлаждением разогнанного процессора не справился ни один из двух тестируемых сегодня кулеров, поэтому результаты «стартуют» с режима работы кулеров с двумя такими вентиляторами:



Вот так вот! Совсем недавно ThermoLab BARAM пусть и на немного, но всё-таки превзошёл по эффективности Thermalright Ultra-120 eXtreme, а сегодня Scythe Mugen 2 выиграл 2 °C у BARAM. Очередная смена лидера и эталона среди систем воздушного охлаждения. Обратите внимание, насколько грамотно подобран вентилятор для нового кулера. С двумя вентиляторами на 860 об/мин Mugen 2 охлаждает процессор на 2 °C хуже, чем с одним ШИМ-вентилятором с максимальной скоростью вращения 1300 об/мин. Установка ещё более мощного вентилятора со скоростью 1860 об/мин приводит к снижению температуры на 3 °C, но уровень шума становится довольно высоким. Ну а второй мощный вентилятор и вовсе ничего не даёт в плане эффективности охлаждения.

«Вторая бесконечность» оказалась эффективнее «воздушного потока» и при тестировании на максимальный разгон процессора:


Scythe Mugen 2 (2х1860 RPM) ThermoLab BARAM (2x1860RPM)


Если и в будущем мы с вами будем свидетелями столь частых смен лидеров систем воздушного охлаждения, «отщипывающих» каждый раз по паре градусов Цельсия, то со временем кулеры достигнут небывалых высот на ниве охлаждения процессоров.

Заключение

При подготовке заключений для статей о тестировании систем охлаждения я всегда стараюсь начать с перечисления недостатков кулера, и только потом говорю об их достоинствах, но сегодня найти недостатки у рассмотренного и протестированного Scythe Mugen 2 оказалось очень сложно. Можно придраться к отсутствию в комплекте ещё одной пары проволочных скоб для установки второго вентилятора, или к дешёвой и не слишком эффективной термопасте SilMORE, или к отсутствию желобков для трубок в основании кулера... Однако, все перечисленные недочёты меркнут перед непревзойдённой эффективностью кулера, невысоким уровнем шума при максимальной нагрузке на процессор и бесшумностью при обычной работе, действительно низкой на фоне других суперкулеров стоимости, полной совместимости со всеми платформами и, наконец, широкой распространённости продукции Scythe по всему миру. Если попробовать Scythe Mugen 2 по всем этим параметрам противопоставить ThermoLab BARAM, то очевидно, что (теперь уже бывший) эталон проигрывает по всем пунктам. Впрочем, окончательные выводы я всё же предлагаю сделать после масштабного тестирования десятка лучших суперкулеров на платформе с процессором Intel Core i7, которое вас в скором времени ожидает.

Уточнить наличие и стоимость кулеров Scythe

Другие материалы по данной теме


Обзор кулеров Thermaltake TMG IA1 и Scythe Kama Angle
Thermalright AXP-140: низкопрофильный кулер высокой эффективности
Cooler Master V10: 10 тепловых трубок, 3 радиатора, 2 вентилятора и модуль Пельтье. Суперкулер?

Лучший способ пользоваться питьевой водой – использовать кулер. Мы поставляем . Они удобно устанавливаются в устройство и используются в офисах, магазинах, квартирах, домах и пр. Также мы предлагаем купить кулер для воды в Москве на выгодных условиях. Несмотря на ассортимент моделей от признанных в отрасли брендов, нам удается удерживать цены на доступном уровне. Вместе с кулером вы можете заказать сразу несколько бутылей, которые позволят пользоваться качественной водой в любое время.

Принцип действия и особенности кулеров для воды

Стандартный вариант кулера подразумевает возможность подогрева или охлаждения воды до нужной температуры. Благодаря предусмотренным двум вентилям можно получить доступ и к холодной, и горячей питьевой воде. Температура последней может достигать 90–98 градусов.

Как правило, на корпусе устройства есть выключатель, индикаторы охлаждения и нагрева. Для питания нужна стандартная сеть (220 В). Однако потребление электроэнергии при этом минимальное, поскольку встроенные датчики регулируют включение и отключение элементов, изменяющих температуру и обеспечивающих подачу воды.

Бренды кулеров для воды

В каталоге мы собрали лучшие образцы от двух известных марок – HotFrost и BioFamily. Все они прошли должные испытания, изготовлены только из безопасных и прочных материалов, поэтому не влияют на качество воды и способны служить максимально долго.

Бренд HotFrost появился в 2003 году. За относительно небольшую историю компании удалось завоевать популярность на рынке стран Таможенного союза. Сейчас она представляет широкий модельный ряд, удовлетворяющий основные желания потребителей.

BioFamily – корейский бренд, представляющий недорогие, простые и надежные устройства, успешно используемые в наших условиях. Кулеры этой марки характеризуются легкостью в обслуживании, использованием компрессора от компании LG.

Vatten - международный бренд, производит кулеры в Италии, Корее, России и Китае. Продукция рассчитана на все ценовые категории.

Виды кулеров для воды

Из разновидностей можно выделить два основных типа:

  • . Удобно располагаются на полу, не требуя много места. Их можно установить в углу, возле входа или в иных незадействованных зонах, не используя полезное пространство, что так важно для наших тесных квартир и дорогостоящих коммерческих площадей.
  • . Экономят пространство, занимая лишь часть стола. Небольшой вариант, который выполняет все основные функции, обеспечивая эффективную подачу воды из бутыли.

Благодаря разнообразию можно подобрать модель с учетом своих потребностей. Лучше всего заранее продумать место, где будет использоваться кулер, что позволит подобрать действительно актуальный вариант. Ведь он не только должен занимать минимум пространства, не мешать перемещению, но и обеспечивать удобный доступ к воде.

По принципу действия различают на такие виды кулеров:

  1. Электронные. В кулерах такого типа вода нагревается или охлаждается благодаря электронному модулю.
  2. Компрессорные. Требуют меньше времени для достижения нужной температуры, чем электронные. Расширение хладагента способствует изменению температурных показателей. В некоторых моделях присутствует регулятор.

По принципу установки бутылей выделяют два типа устройств:

  1. С верхней установкой. Для смены бутылей необходимо обладать определенной физической силой, поэтому рекомендуется, чтобы для этого в доме или офисе были мужчины.
  2. С нижней установкой. Простой в обслуживании вариант, поскольку нужно меньше усилий для замены бутыли.

Есть модификации, подразумевающие . Как правило, объем камеры составляет до 20 л, поэтому в ней можно хранить немного продуктов или напитков. Такое решение весьма уместно для небольшого офиса. Таким образом, предприятие может сэкономить и средства, и свободное место.

Также среди модификаций встречаются кулеры-ледогенераторы и . В последнем случае в конструкции устанавливается специальный баллон с углекислым газом. Постепенно увеличивается спрос на кулеры с функцией , реализованной посредством . Благодаря этому можно дезинфицировать посуду, хранить овощи либо фрукты, озонировать воду.

Преимущества компании «Водохлёб»

Мы предлагаем выгодные условия покупки. Все модели проверены производителем и имеют подтверждающую документацию, готовы к беспроблемной и длительной эксплуатации. Кулеры можно не только выгодно купить, но и взять в аренду. Причем минимальный срок – от 1 дня.

Также вы обретаете:

  • возможность периодически получать чистую воду из выбранного источника в удобное для вас время;
  • полное – гарантийный и послегарантийный ремонт даже тех моделей, которые были приобретены не у нас;
  • широкий ассортимент сопутствующих товаров: , аксессуары.

«Водохлёб» обеспечивает полное оснащение для снабжения качественной питьевой водой вашего дома или офиса!