Самое тяжелое железо в мире. Тайны самого не только тяжелого, но и плотного металла в мире. Самые тяжелые металлы в мире

Мы все любим металлы. Машины, велосипеды, кухонная техника, банки для напитков и множество других вещей — все они состоят из металла. Металл — краеугольный камень нашей жизни. Но иногда он бывает очень тяжелым.

Когда мы говорим о тяжести того или иного метала, то обычно имеем в виде его плотность, то есть соотношение массы к занимаемому объёму.

Еще одним способом измерения «веса» металлов является их относительная атомная масса. Самыми тяжелыми металлами по относительной атомной массе являются плутоний и уран.

Если вы хотите узнать, какой металл самый тяжелый , если рассматривать его плотность, то мы рады вам помочь. Вот топ-10 самых тяжелых металлов на Земле с указанием их плотности на кубический см.

10. Тантал — 16,67 г/см³

Тантал является важным компонентом во многих современных технологиях. В частности, он используется для производства конденсаторов, которые применяются в компьютерной технике и мобильных телефонах.

9. Уран — 19,05 г/см³

Это самый тяжелый элемент на Земле, если учитывать его атомную массу — 238,0289 г/моль. В чистом виде уран представляет собой серебристо-коричневый тяжелый металл, который почти вдвое плотнее свинца.

Как и плутоний, уран служит необходимым компонентом для создания ядерного оружия.

8. Вольфрам — 19,29 г/см³

Считается одним из самых плотных элементов в мире. В дополнение к своим исключительным свойствам (высокая теплопроводность и электропроводность, очень высокая стойкость к воздействию кислот и истиранию) вольфрам также отличается тремя уникальными свойствами:

  • После углерода он имеет самую высокую температуру плавления — плюс 3422 ° C. А его температура кипения — плюс 5555 ° C, эта температура примерно сопоставима с температурой поверхности Солнца.
  • Сопровождает оловянные руды, однако препятствует выплавке олова, переводя его в пену шлаков. За это и получил свое название, которое в переводе с немецкого означает «волчьи сливки».
  • Вольфрам имеет самый низкий коэффициент линейного расширения при нагревании из всех металлов.

7. Золото — 19,29 г/см³

С давних времен люди покупают, продают и даже убивают за этот драгоценный металл. Да что люди, целые страны занимаются скупкой золота. Лидером на данный момент является Америка. И вряд ли наступит пора, когда в золоте не будет нужды.

Говорят, что деньги не растут на деревьях, но золото — растет! Небольшое количество золота можно найти в листьях эвкалипта, если тот находится на золотоносной почве.

6. Плутоний — 19,80 г/см³

Шестой самый тяжелый металл в мире — один из самых нужных компонентов для . А еще он — настоящий хамелеон в мире элементов. Плутоний демонстрирует красочное состояние окисления в водных растворах, при этом их цвет варьируется от светло-фиолетового и шоколадного до светло-оранжевого и зеленого.
Цвет зависит от степени окисления плутония и солей кислот.

5. Нептуний — 20,47 г/см³

Этот металл с серебристым блеском, названный в честь планеты Нептун, был открыт химиком Эдвином Макмилланом и геохимиком Филиппом Абельсоном в 1940 году. Он используется для получения шестого номера в нашем списке, плутония.

4. Рений — 21,01 г/см³

Слово «Рений» происходит от латинского Rhenus, что означает «Рейн». Нетрудно догадаться, что этот металл был обнаружен в Германии. Честь его открытия принадлежит немецким химикам Иде и Вальтеру Ноддакам. Это последний из открытых элементов, у которого есть стабильный изотоп.

Из-за очень высокой температуры плавления рений (в виде сплавов с молибденом, вольфрамом и другими металлами) применяется для создания компонентов ракетной техники и авиации.

3. Платина — 21,40 г/см³

Один из в этом списке (кроме Осмия и Калифорния-252) используется в самых разных областях — от ювелирного дела до химической промышленности и космической техники. В России лидером по добыче платинового металла является ГМК «Норильский никель». В год в стране добывается около 25 тонн платины.

2. Осмий — 22,61 г/см³

Хрупкий и при этом крайне твердый металл редко используется в чистом виде. В основном его смешивают с другими плотными металлами, такими как платина, для создания очень сложного и дорогого хирургического оборудования.

Название «осмий» происходит от древнегреческого слова «запах». При растворении щелочного сплава осмиридия в жидкости появляется резкое амбре, похожее на запах хлора или подгнившей редьки.

1. Иридий — 22,65 г/см³ – самый тяжелый металл

Этот металл с полным правом может претендовать на звание элемента с наибольшей плотностью. Однако споры о том, какой же металл тяжелее — иридий или осмий, все-таки ведутся. А все дело в том, что любая примесь может снизить плотность этих металлов, а их получение в чистом виде — очень тяжелая задача.

Теоретическая расчетная плотность иридия составляет 22,65 г/см³. Он почти втрое тяжелее, чем железо (7,8 г/см³). И почти вдвое тяжелее, чем самый тяжелый жидкий металл — ртуть (13,6 г/см³).

Как и осмий, иридий был открыт английским химиком Смитсоном Теннантом в начале 19 века. Любопытно, что Теннант нашел иридий вовсе не целенаправленно, а случайно. Он был обнаружен в примеси, оставшейся после растворения платины.

Иридий в основном используется в качестве отвердителя платиновых сплавов для оборудования, которое должно выдерживать высокие температуры. Он перерабатывается из платиновой руды и является побочным продуктом при добыче никеля.

Название «иридий» переводится с древнегреческого как «радуга». Это объясняется наличием в металле солей разнообразной окраски.

Самый тяжелый металл в периодической таблице Менделеева очень редко встречается в земных веществах. Поэтому его высокая концентрация в образцах породы — маркер их метеоритного происхождения. За год во всем мире добывают около 10 тысяч килограмм иридия. Крупнейший его поставщик — Южная Африка.

Осмий на сегодня определён как самое тяжёлое вещество на планете. Всего один кубический сантиметр этого вещества весит 22.6 грамма. Он был открыт в 1804 году английским химиком Смитсоном Теннантом, при растворении золота в После в пробирке остался осадок. Это произошло из-за особенности осмия, он нерастворим в щелочах и кислотах.

Самый тяжёлый элемент на планете

Представляет собой голубовато-белый металлический порошок. В природе встречается в виде семи изотопов, шесть из них стабильны и один неустойчив. По плотности немного превосходит иридий, который имеет плотность 22,4 грамма на кубический сантиметр. Из обнаруженных на сегодня материалов, самое тяжёлое вещество в мире - это осмий.

Он относится к группе таких как лантан, иттрий, скандий и других лантаноидов.

Дороже золота и алмазов

Добывается его очень мало, порядка десяти тысяч килограмм в год. Даже в наиболее большом источнике осмия, Джезказганском месторождении, содержится порядка трёх десятимиллионных долей. Биржевая стоимость редкого металла в мире достигает порядка 200 тысяч долларов за один грамм. При этом максимальная чистота элемента в процессе очистки около семидесяти процентов.

Хотя в российских лабораториях удалось получить чистоту 90,4 процента, но количество металла не превышало нескольких миллиграмм.

Плотность материи за пределами планеты Земля

Осмий, бесспорно, является лидером самых тяжёлых элементов нашей планеты. Но если мы обратим свой взор в космос, то нашему вниманию откроется множество веществ более тяжёлых, чем наш «король» тяжёлых элементов.

Дело в том, что во Вселенной существуют условия несколько другие, чем на Земле. Гравитация ряда настолько велика, что вещество неимоверно уплотняется.

Если рассмотреть структуру атома, то обнаружится, что расстояния в межатомном мире чем-то напоминают видимый нами космос. Где планеты, звезды и прочие находятся на достаточно большой дистанции. Остальное же занимает пустота. Именно такую структуру имеют атомы, и при сильной гравитации эта дистанция достаточно сильно уменьшается. Вплоть до «вдавливания» одних элементарных частиц в другие.

Нейтронные звезды - сверхплотные объекты космоса

В поисках за пределами нашей Земли мы сможем обнаружить самое тяжёлое вещество в космосе на нейтронных звёздах.

Это достаточно уникальные космические обитатели, один из возможных типов эволюции звёзд. Диаметр таких объектов составляет от 10 до 200 километров, при массе равной нашему Солнцу или в 2-3 раза больше.

Это космическое тело в основном состоит из нейтронной сердцевины, которая состоит из текучих нейтронов. Хотя по некоторым предположениям учёных она должна находиться в твёрдом состоянии, достоверной информации на сегодня не существует. Однако известно, что именно нейтронные звезды, достигая своего передела сжатия, впоследствии превращаются в с колоссальным выбросом энергии, порядка 10 43 -10 45 джоулей.

Плотность такой звезды сравнима, к примеру, с весом горы Эверест, помещённой в спичечный коробок. Это сотни миллиардов тонн в одном кубическом миллиметре. К примеру, чтобы стало более понятно, насколько велика плотность вещества, возьмём нашу планету с её массой 5,9×1024 кг и «превратим» в нейтронную звезду.

В результате, чтобы сравнялась с плотностью нейтронной звезды, её нужно уменьшить до размеров обычного яблока, диаметром 7-10 сантиметров. Плотность уникальных звёздных объектов увеличивается с перемещением к центру.

Слои и плотность вещества

Наружный слой звезды представлен собой в виде магнитосферы. Непосредственно под ней плотность вещества уже достигает порядка одной тонны на сантиметр кубический. Учитывая наши знания о Земле, на данный момент, это самое тяжёлое вещество из обнаруженных элементов. Но не спешите с выводами.

Продолжим наши исследования уникальных звёзд. Их называют также пульсарами, из-за высокой скорости вращения вокруг своей оси. Этот показатель у различных объектов колеблется от нескольких десятков до сотен оборотов в секунду.

Проследуем далее в изучении сверхплотных космических тел. Затем следует слой, который имеет характеристики металла, но, скорее всего, он похож по поведению и структуре. Кристаллы намного меньше, чем мы видим в кристаллической решётке Земных веществ. Чтобы выстроить линию из кристаллов в 1 сантиметр, понадобится выложить более 10 миллиардов элементов. Плотность в этом слое в один миллион раз выше, чем в наружном. Это не самое тяжёлое вещество звезды. Далее следует слой, богатый нейтронами, плотность которого в тысячу раз превышает предыдущий.

Ядро нейтронной звезды и его плотность

Ниже находится ядро, именно здесь плотность достигает своего максимума - в два раза выше, чем вышележащий слой. Вещество ядра небесного тела состоит из всех известных физике элементарных частиц. На этом мы достигли конца путешествия к ядру звезды в поисках самого тяжёлого вещества в космосе.

Миссия в поисках уникальных по плотности веществ во Вселенной, казалось бы, завершена. Но космос полон загадок и неоткрытых явлений, звёзд, фактов и закономерностей.

Чёрные дыры во Вселенной

Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной - их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.

По предположениям учёных, вещество, затянутое в область пространства времени, уплотняется настолько, что пространства между элементарными частицами не остаётся.

К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.

Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.

Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.

Осмий VS Иридий

Споры о том, какой из двух элементов таблицы Менделеева является более тяжелым, до сих пор не стихают. За это право состязаются два самых тяжелых элемента таблицы - Осмий (76) и Иридий (77). Плотность обоих элементов приблизительно равна 22,6 г/см 3 .

В отличие от явного лидера, среди лёгких металлов - с тяжелыми не всё так просто. Потому рассмотрим оба этих металла.

Иридий

Больше двух столетий прошло с тех пор, как появились первые сведения о платине – белом металле из Южной Америки. Долгое время люди были уверены, что это чистый металл, так же, как золото. Только в самом начале XIX в. Волластон сумел выделить из самородной платины палладий и родий, а в 1804 г. Теннант, изучая черный осадок, оставшийся после растворения самородной платины в царской водке, нашел в нем еще два элемента. Один из них он назвал осмием, а второй – иридием. Соли этого элемента в разных условиях окрашивались в различные цвета. Это свойство и было положено в основу названия: по-гречески слово ιρις, значит «радуга».

Русский химик

В 1841 г. известный русский химик профессор Карл Карлович Клаус занялся исследованием так называемых платиновых остатков, т.е. нерастворимого осадка, остающегося после обработки сырой платины царской водкой. «При самом начале работы, – писал Клаус, – я был удивлен богатством моего остатка, ибо извлек из него, кроме 10% платины, немалое количество иридия, родия, осмия, несколько палладия и смесь различных металлов особенного содержания»...

Клаус сообщил горному начальству о богатстве остатков. Власти заинтересовались открытием казанского ученого, которое сулило значительные выгоды. Из платины в то время чеканили монету, и получение драгоценного металла из остатков казалось очень перспективным. Через год Петербургский монетный двор выделил Клаусу полпуда остатков. Но они оказались бедными платиной, и ученый решил провести на них исследование, «интересное для науки».

«Два года, – писал Клаус, – занимался я постоянно этим трудным, продолжительным и даже вредным для здоровья исследованием» и в 1845 г. опубликовал работу «Химическое исследование остатков уральской платиновой руды и металла рутения». Это было первое систематическое исследование свойств аналогов платины. В нем впервые были описаны и химические свойства иридия.

Клаус отмечал, что иридием он занимался больше, чем другими металлами платиновой группы. В главе об иридии он обратил внимание на неточности, допущенные Берцелиусом при определении основных констант этого элемента, и объяснил эти неточности тем, что маститый ученый работал с иридием, содержащим примесь рутения, тогда еще не известного химикам и открытого лишь в ходе «химического исследования остатков уральской платиновой руды и металла рутения».

Какой же он, иридий?

Атомная масса элемента №77 равна 192,2. В таблице Менделеева он находится между осмием и платиной. И в природе он встречается главным образом в виде осмистого иридия – частого спутника самородной платины. Самородного иридия в природе нет.

Иридий – серебристо-белый металл, очень твердый, тяжелый и прочный. По данным фирмы «Интернейшнл Никель и Ко», это самый тяжелый элемент: его плотность 22,65 г/см 3 , а плотность его постоянного спутника – осмия, второго по тяжести 22,61 г/см 3 . Правда, большинство исследователей придерживаются иной точки зрения: они считают, что иридий все-таки немного легче осмия.

Естественное свойство иридия (он же платиноид!) – высокая коррозионная стойкость. На него не действуют кислоты ни при нормальной, ни при повышенной температуре. Даже знаменитой царской водке монолитный иридий «не по зубам». Только расплавленные щелочи и перекись натрия вызывают окисление элемента №77.

Иридий стоек к действию галогенов. Он реагирует с ними с большим трудом и только при повышенной температуре. Хлор образует с иридием четыре хлорида: IrCl, IrCl 2 , IrCl 3 и IrCl 4 . Треххлористый иридий получается легче всего из порошка иридия, помещенного в струю хлора при 600°C. Единственное галоидное соединение, в котором иридий шестивалентен, – это фторид IrF 6 . Тонкоизмельченный иридий окисляется при 1000°C и в струе кислорода, причем в зависимости от условий могут получаться несколько соединений разного состава.

Как и все металлы платиновой группы, иридий образует комплексные соли. Среди них есть и соли с комплексными катионами, например Cl 3 и соли с комплексными анионами, например K 3 · 3H 2 O. Как комплексообразователь иридий похож на своих соседей по таблице Менделеева.

Чистый иридий получают из самородного осмистого иридия и из остатков платиновых руд (после того как из них извлечены платина, осмий, палладий и рутений). О технологии получения иридия распространяться не будем, отослав читателя к статьям «Родий», «Осмий» и «Платина».

Иридий получают в виде порошка, который затем прессуют в полуфабрикаты и сплавляют или же порошок переплавляют в электрических печах в атмосфере аргона. Чистый иридий в горячем состоянии можно ковать, однако при обычной температуре он хрупок и не поддается никакой обработке.

Иридий в деле

Из чистого иридия делают тигли для лабораторных целей и мундштуки для выдувания тугоплавкого стекла. Можно, конечно, использовать иридий и в качестве покрытия. Однако здесь встречаются трудности. Обычным электролитическим способом иридий на другой металл наносится с трудом, и покрытие получается довольно рыхлое. Наилучшим электролитом был бы комплексный гексахлорид иридия, однако он неустойчив в водном растворе, и даже в этом случае качество покрытия оставляет желать лучшего.

Разработан метод получения иридиевых покрытий электролитическим путем из расплавленных цианидов калия и натрия при 600°C. В этом случае образуется плотное покрытие толщиной до 0,08 мм.

Менее трудоемко получение иридиевых покрытий методом плакирования. На основной металл укладывают тонкий слой металла-покрытия, а затем этот «бутерброд» идет под горячий пресс. Таким образом получают вольфрамовую и молибденовую проволоку с иридиевым покрытием. Заготовку из молибдена или вольфрама вставляют в иридиевую трубку и проковывают в горячем состоянии, а затем волочат до нужной толщины при 500...600°C. Эту проволоку используют для изготовления управляющих сеток в электронных лампах.

Можно наносить иридиевые покрытия на металлы и керамику химическим способом. Для этого получают раствор комплексной соли иридия, например с фенолом или каким-либо другим органическим веществом. Такой раствор наносят на поверхность изделия, которое затем нагревают до 350...400°C в контролируемой атмосфере, т.е. в атмосфере с регулируемым окислительно-восстановительным потенциалом. Органика в этих условиях улетучивается, или выгорает, а слой иридия остается на изделии.

Но покрытия – не главное применение иридия. Этот металл улучшает механические и физико-химические свойства других металлов. Обычно его используют, чтобы повысить их прочность и твердость. Добавка 10% иридия к относительно мягкой платине повышает ее твердость и предел прочности почти втрое. Если же количество иридия в сплаве увеличить до 30%, твердость сплава возрастет ненамного, но зато предел прочности увеличится еще вдвое – до 99 кг/мм 2 . Поскольку такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах. В таких тиглях выращивают, в частности, кристаллы для лазерной техники. Платино-иридиевые сплавы привлекают и ювелиров – украшения из этих сплавов красивы и почти не изнашиваются. Из платино-иридиевого сплава делают также эталоны, иногда – хирургический инструмент.

Спдавы иридия

В будущем сплавы иридия с платиной могут приобрести особое значение в так называемой слаботочной технике как идеальный материал для контактов. Каждый раз, когда происходит замыкание и размыкание обычного медного контакта, возникает искра; в результате поверхность меди довольно быстро окисляется. В контакторах для сильных токов, например для электродвигателей, это явление не очень вредит работе: поверхность контактов время от времени зачищают наждачной бумагой, и контактор вновь готов к работе. Но, когда мы имеем дело со слаботочной аппаратурой, например в технике связи, тонкий слой окиси меди весьма сильно влияет на всю систему, затрудняет прохождение тока через контакт. А именно в этих устройствах частота включений бывает особенно большой – достаточно вспомнить АТС (автоматические телефонные станции). Вот здесь-то и придут на помощь необгорающие платино-иридиевые контакты – они могут работать практически вечно! Жаль только, что эти сплавы очень дороги и пока их недостаточно.

Иридий добавляют не только к платине. Небольшие добавки элемента №77 к вольфраму и молибдену увеличивают прочность этих металлов при высокой температуре. Мизерная добавка иридия к титану (0,1%) резко повышает его и без того значительную стойкость к действию кислот. То же относится и к хрому. Термопары, состоящие из иридия и сплава иридия с родием (40% родия), надежно работают при высокой температуре в окислительной атмосфере. Из сплава иридия с осмием делают напайки для перьев авторучек и компасные иглы.

Резюмируя, можно сказать, что металлический иридий применяют главным образом из-за его постоянства – постоянны размеры изделий из металла, его физические и химические свойства, причем, если можно так выразиться, постоянны на высшем уровне.

Запасы на Земле

Как и другие металлы VIII группы, иридий может быть использован в химической промышленности в качестве катализатора. Иридиево-никелевые катализаторы иногда применяют для получения пропилена из ацетилена и метана. Иридий входил в состав платиновых катализаторов реакции образования окислов азота (в процессе получения азотной кислоты). Один из окислов иридия, IrO 2 , пытались применять в фарфоровой промышленности в качестве черной краски. Но слишком уж дорога эта краска...

Запасы иридия на Земле невелики, его содержание в земной коре исчисляется миллионными долями процента. Невелико и производство этого элемента – не больше тонны в год. Во всем мире!

В связи с этим трудно предположить, что со временем в судьбе иридия наступят разительные перемены – он навсегда останется редким и дорогим металлом. Но там, где его применяют, он служит безотказно, и в этой уникальной надежности залог того, что наука и промышленность будущего без иридия не обойдутся.

Иридиевый сторож

Во многих химических и металлургических производствах, например в доменном, очень важно знать уровень твердых материалов в агрегатах. Обычно для такого контроля используют громоздкие зонды, подвешиваемые на специальных зондовых лебедках. В последние годы зонды стали заменять малогабаритными контейнерами с искусственным радиоактивным изотопом – иридием-192. Ядра 192 Ir испускают гамма-лучи высокой энергии; период полураспада изотопа равен 74,4 суток. Часть гамма-лучей поглощается шихтой, и приемники излучения фиксируют ослабление потока. Последнее пропорционально расстоянию, которое проходят лучи в шихте. Иридий-192 с успехом применяют и для контроля сварных швов; с его помощью па фотопленке четко фиксируются все непроваренные места и инородные включения. Гамма-дефектоскопы с иридием-192 используют также для контроля качества изделий из стали и алюминиевых сплавов.

Эффект Мёссбауэра

В 1958 г. молодой физик из ФРГ Рудольф Мёссбауэр сделал открытие, обратившее на себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерные явления. Через три года после открытия, в 1961 г., Мёссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192.

Сердце бьется активнее

Одно из наиболее интересных применений платино-иридиевых сплавов за последние годы – изготовление из них электрических стимуляторов сердечной деятельности. В сердце больного стенокардией вживляют электроды с платино-иридиевыми зажимами. Электроды соединены с приемником, который тоже находится в теле больного. Генератор же с кольцевой антенной находится снаружи, например в кармане больного. Кольцевая антенна крепится на теле напротив приемника. Когда больной чувствует, что наступает приступ стенокардии, он включает генератор. В кольцевую антенну поступают импульсы, которые передаются в приемник, а от него – на платино-придиевые электроды. Электроды, передавая импульсы на нервы, заставляют сердце биться активнее. Сейчас в СССР многие станции скорой помощи оборудованы подобными генераторами. В случае остановки сердца делают надрез ключичной вены, вводят в нее соединенный с генератором электрод, включают генератор, и через несколько минут сердце вновь начинает работать.

Изотопы – стабильные и нестабильные

В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме иридия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в то же время – самый короткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада – ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого – иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191 соответственно 37,3%.

Полезные хлориридаты

Хлориридатами называют комплексные хлориды четырехвалентного иридия; общая их формула Me 2 . Благодаря хлориридатам можно в принципе уверенно разделять соединения таких похожих элементов, как натрий и калий. Хлориридат натрия растворим в воде, а хлориридат калия – практически нерастворим. Но для такой операции хлориридаты слишком дороги, так как дорог исходный иридий. Это не значит однако, что хлориридаты вообще бесполезны. Способность иридия образовывать эти соединения используют для выделения элемента №77 из смеси платиновых металлов.

Если с точки зрения практики элемент №76 среди прочих платиновых металлов выглядит достаточно заурядно, то с точки зрения классической химии (подчеркиваем, классической неорганической химии, а не химии комплексных соединений) этот элемент весьма знаменателен.

Прежде всего, для него, в отличие от большинства элементов VIII группы, характерна валентность 8+, и он образует с кислородом устойчивую четырехокись OsO 4 . Это своеобразное соединение, и, видимо, не случайно элемент №76 получил название, в основу которого положено одно из характерных свойств его четырехокиси.

Осмий обнаруживают по запаху

Подобное утверждение может показаться парадоксальным: ведь речь идет не о галогене, а о платиновом металле...

История открытия четырех из пяти платиноидов связана с именами двух английских ученых, двух современников. Уильям Волластон в 1803...1804 гг. открыл палладий и родий, а другой англичанин, Смитсон Теннант (1761...1815), в 1804 г. – иридий и осмий. Но если Волластон оба «свои» элемента нашел в той части сырой платины, которая растворялась в царской водке, то Теннанту повезло при работе с нерастворимым остатком: как оказалось, он представлял собой естественный природный сплав иридия с осмием.

Тот же остаток исследовали и три известных французских химика – Колле-Дескоти, Фуркруа и Воклен. Они начали свои исследования даже раньше Теннанта. Как и он, они наблюдали выделение черного дыма при растворении сырой платины. Как и он, они, сплавив нерастворимый остаток с едким кали, сумели получить соединения, которые все-таки удавалось растворить. Фуркруа и Воклен были настолько убеждены, что в нерастворимом остатке сырой платины есть новый элемент, что заранее дали ему имя – птен – от греческого πτηνος – крылатый. Но только Теннанту удалось разделить этот остаток и доказать существование двух новых элементов – иридия и осмия.

Название элемента №76 происходит от греческого слова οσμη, что означает «запах». Неприятный раздражающий запах, похожий одновременно на запахи хлора и чеснока, появлялся, когда растворяли продукт сплавления осмиридия со щелочью. Носителем этого запаха оказался осмиевый ангидрид, или четырехокись осмия OsO 4 . Позже выяснилось, что так же скверно, хотя и значительно слабее, может пахнуть и сам осмий. Тонкоизмельченный, он постепенно окисляется на воздухе, превращаясь в OsO 4 ...

Осмий металлический

Осмий – оловянно-белый металл с серовато-голубым оттенком. Это самый тяжелый из всех металлов (его плотность 22,6 г/см 3) и один из самых твердых. Тем не менее осмиевую губку можно растереть в порошок, поскольку он хрупок. Плавится осмий при температуре около 3000°C, а температура его кипения до сих пор точно не определена. Полагают, что она лежит где-то около 5500°C.

Большая твердость осмия (7,0 по шкале Мооса), пожалуй, то из его физических свойств, которое используют наиболее широко. Осмий вводят в состав твердых сплавов, обладающих наивысшей износостойкостью. У дорогих авторучек напайку на кончик пера делают из сплавов осмия с другими платиновыми металлами или с вольфрамом и кобальтом. Из подобных же сплавов делают небольшие детали точных измерительных приборов, подверженные износу. Небольшие – потому что осмий мало распространен (5·10 –6 % веса земной коры), рассеян и дорог. Этим же объясняется ограниченное применение осмия в промышленности. Он идет лишь туда, где при малых затратах металла можно получить большой эффект. Например, в химическую промышленность, которая пытается использовать осмий как катализатор. В реакциях гидрогенизации органических веществ осмиевые катализаторы даже эффективнее платиновых.

Несколько слов о положении осмия среди прочих платиновых металлов. Внешне он мало от них отличается, но именно у осмия самые высокие температуры плавления и кипения среди всех металлов этой группы, именно он наиболее тяжел. Его же можно считать наименее «благородным» из платиноидов, поскольку кислородом воздуха он окисляется уже при комнатной температуре (в мелкораздробленном состоянии). А еще осмий – самый дорогой из всех платиновых металлов. Если в 1966 г. платина ценилась на мировом рынке в 4,3 раза дороже, чем золото, а иридий – в 5,3, то аналогичный коэффициент для осмия был равен 7,5.

Как и прочие платиновые металлы, осмий проявляет несколько валентностей: 0, 2+, 3+, 4+, 6+ и 8 +. Чаще всего можно встретить соединения четырех- и шестивалентного осмия. Но при взаимодействии с кислородом он проявляет валентность 8+.

Как и прочие платиновые металлы, осмий – хороший комплексообразователь, и химия соединений осмия не менее разнообразна, чем, скажем, химия палладия или рутения.

Ангидрид и другие

Несомненно, самым важным соединением осмия остается его четырехокись OsO 4 , пли осмиевый ангидрид. Как и элементарный осмий, OsO 4 обладает каталитическими свойствами; OsO 4 применяют при синтезе важнейшего современного лекарственного препарата – кортизона. При микроскопических исследованиях животных и растительных тканей четырехокись осмия используют как окрашивающий препарат. OsO 4 очень ядовит, он сильно раздражает кожу, слизистые оболочки и особенно вреден для глаз. Любая работа с этим полезным веществом требует чрезвычайной осторожности.

Внешне чистая четырехокись осмия выглядит достаточно обычно – бледно-желтые кристаллы, растворимые в воде и четыреххлористом углероде. При температуре около 40°C (есть две модификации OsO 4 с близкими точками плавления) они плавятся, а при 130°C четырехокись осмия закипает.

Другой окисел осмия – OsO 2 – нерастворимый в воде черный порошок – практического значения не имеет. Также не нашли пока практического применения и другие известные соединения элемента №76 – его хлориды и фториды, иодиды и оксихлориды, сульфид OsS 2 и теллурид OsTe 2 – черные вещества со структурой пирита, а также многочисленные комплексы и большинство сплавов осмия. Исключение составляют лишь некоторые сплавы элемента №76 с другими платиновыми металлами, вольфрамом и кобальтом. Главный их потребитель – приборостроение.

Как получают осмий

Самородный осмий в природе не найден. Он всегда связан в минералах с другим металлом платиновой группы – иридием. Существует целая группа минералов осмистого иридия. Самый распространенный из них – невьянскит, природный сплав этих двух металлов. Иридия в нем больше, поэтому невьянскит часто называют просто осмистым иридием. Зато другой минерал – сысертскит – называют иридистым осмием – в нем больше осмия... Оба эти минерала – тяжелые, с металлическим блеском, и это не удивительно – таков их состав. И само собой разумеется, все минералы группы осмистого иридия очень редки.

Иногда эти минералы встречаются самостоятельно, чаще же осмистый иридий входит в состав самородной сырой платины. Основные запасы этих минералов сосредоточены в СССР (Сибирь, Урал), США (Аляска, Калифорния), Колумбии, Канаде, странах Южной Африки.

Естественно, что добывают осмий совместно с платиной, но аффинаж осмия существенно отличается от способов выделения других платиновых металлов. Все их, кроме рутения, осаждают из растворов, осмий же получают отгонкой его относительно летучей четырехокиси.

Но прежде чем отгонять OsO 4 , нужно отделить от платины осмистый иридий, а затем разделить иридий и осмий.

Когда платину растворяют в царской водке, минералы группы осмистого иридия остаются в осадке: даже этот из всех растворителей растворитель не может одолеть эти устойчивейшие природные сплавы. Чтобы перевести их в раствор, осадок сплавляют с восьмикратным количеством цинка – этот сплав сравнительно просто превратить в порошок. Порошок спекают с перекисью бария BaO 3 , а затем полученную массу обрабатывают смесью азотной и соляной кислот непосредственно в перегонном аппарате – для отгонки OsO 4 .

Ее улавливают щелочным раствором и получают соль состава Na 2 OsO 4 . Раствор этой соли обрабатывают гипосульфитом, после чего осмий осаждают хлористым аммонием в виде соли Фреми Cl 2 . Осадок промывают, фильтруют, а затем прокаливают в восстановительном пламени. Так получают пока еще недостаточно чистый губчатый осмий.

Затем его очищают, обрабатывая кислотами (HF и HCl), и довосстанавливают в электропечи в струе водорода. После охлаждения получают металл чистотой до 99,9% O 3 .

Такова классическая схема получения осмия – металла, который применяют пока крайне ограниченно, металла очень дорогого, но достаточно полезного.

Чем больше, тем... больше

Природный осмий состоит из семи стабильных изотопов с массовыми числами 184, 186...190 и 192. Любопытная закономерность: чем больше массовое число изотопа осмия, тем больше он распространен. Доля самого легкого изотопа, осмия-184, – 0,018%, а самого тяжелого, осмия-192, – 41%. Из искусственных радиоактивных изотопов элемента №76 самый долгоживущий – осмий-194 с периодом полураспада около 700 дней.

Карбонилы осмия

В последние годы химиков и металлургов все больше интересуют карбонилы – соединения металлов с СО, в которых металлы формально нульвалентны. Карбонил никеля уже довольно широко применяется в металлургии, и это позволяет надеяться, что и другие подобные соединения со временем смогут облегчить получение тех или иных ценных материалов. Для осмия сейчас известны два карбонила. Пентакарбонил Os(CO) 5 – в обычных условиях бесцветная жидкость (температура плавления – 15°C). Получают его при 300°C и 300 атм. из четырехокиси осмия и угарного газа. При обычных температуре и давлении Os(CO) 5 постепенно переходит в другой карбонил состава Os 3 (CO) 12 – желтое кристаллическое вещество, плавящееся при 224°C. Интересно строение этого вещества: три атома осмия образуют равносторонний треугольник с гранями длиной 2,88 Ǻ, а к каждой вершине этого треугольника присоединены по четыре молекулы СО.

Фториды спорные и бесспорные

«Фториды OsF 4 , OsF 6 , OsF 8 образуются из элементов при 250...300°C... OsF 8 – самый летучий из всех фторидов осмия, т. кип. 47,5°»... Эта цитата взята из III тома «Краткой химической энциклопедии», выпущенного в 1964 г. Но в III томе «Основ общей химии» Б.В. Некрасова, вышедшем в 1970 г., существование октафторида осмия OsF 8 отвергается. Цитируем: «В 1913 г. были впервые получены два летучих фторида осмия, описанные как OsF 6 и OsF 8 . Так и считалось до 1958 г., когда выяснилось, что в действительности они отвечают формулам OsF 5 и OsF 6 . Таким образом, 45 лет фигурировавший в научной литературе OsF 8 на самом деле никогда не существовал. Подобные случаи «закрытия» ранее описанных соединений встречаются не так уж редко».

Заметим, что и элементы тоже иногда приходится «закрывать»... Остается добавить, что, помимо упомянутых в «Краткой химической энциклопедии», был получен еще один фторид осмия – нестойкий OsF 7 . Это бледно-желтое вещество при температуре выше –100°C распадается на OsF 6 и элементарный фтор.

По материалам n-t.ru

Использование металлов в повседневной жизни началось на заре развития человечества, и первым металлом являлась медь, поскольку является доступной в природе и легко поддается обработке. Недаром археологи при раскопках находят различные изделия и домашнюю утварь из этого металла. В процессе эволюции люди постепенно учились соединять различные металлы, получая все более прочные сплавы, пригодные для изготовления орудий труда, а позже и оружия. В наше время продолжаются эксперименты, благодаря которым можно выявить самые прочные металлы в мире.

10.

  • высокая удельная прочность;
  • стойкость к высоким температурам;
  • низкая плотность;
  • коррозийная стойкость;
  • механическая и химическая стойкость.

Титан применяется в военной промышленности, медицине авиации, кораблестроении, и других сферах производства.

9.

Самый известный элемент, который считается одним из самых прочных металлов в мире, и в нормальных условиях представляет собой слабый радиоактивный металл. В природе находится как в свободном состоянии, так и в кислых осадочных породах. Он достаточно тяжел, широко распространен повсеместно и обладает парамагнитными свойствами, гибкостью, ковкостью, и относительной пластичностью. Уран применяется во многих сферах производства.

8.

Известен как самый тугоплавкий металл из всех существующих, и относится к самым прочным металлам в мире. Представляет собой твердый переходный элемент блестящего серебристо-серого цвета. Обладает высокой прочностью, отличной тугоплавкостью, стойкостью к химическим воздействиям. Благодаря своим свойствам поддается ковке, и вытягивается в тонкую нить. Известен в качестве вольфрамовой нити накаливания.

7.

Среди представителей данной группы считается переходным металлом высокой плотности серебристо-белого цвета. В природе встречается в чистом виде, однако встречается в молибденовом и медном сырье. Отличается высокой твердостью и плотностью, и имеет отличную тугоплавкость. Обладает повышенной прочностью, которая не теряется при многократных перепадах температур. Рений относится к дорогим металлам и имеет высокую стоимость. Используется в современной технике и электронике.

6.

Блестящий серебристо-белый металл со слегка голубоватым отливом, относится к платиновой группе и считается одним из самых прочных металлов в мире. Аналогично иридию имеет высокую атомную плотность высокую прочность и твердость. Поскольку осмий относится к платиновым металлам, имеет схожие с иридием свойства: тугоплавкость, твердость, хрупкость, стойкость к механическим воздействиям, а также к влиянию агрессивных сред. Нашел широкое применение в хирургии, электронной микроскопии, химической промышленности, ракетной технике, электронной аппаратуре.

5.

Относится к группе металлов, и представляет собой элемент светло-серого цвета, обладающий относительной твердостью и высокой токсичностью. Благодаря своим уникальным свойствам бериллий применяется в самых различных сферах производства:

  • ядерной энергетике;
  • аэрокосмической технике;
  • металлургии;
  • лазерной технике;
  • атомной энергетике.

Из-за высокой твердости бериллий используется при производстве легирующих сплавов, огнеупорных материалов.

4.

Следующим в десятке самых прочных металлов в мире является хром – твердый, высокопрочный металл голубовато-белого цвета, стойкий к воздействию щелочей и кислот. В природе встречается в чистом виде и широко применяется в различных отраслях науки, техники и производства. Хром Используется для создания различных сплавов, которые используются при изготовлении медицинского, а также химического технологического оборудования. В соединении с железом образует сплав феррохром, который используется при изготовлении металлорежущих инструментов.

3.

Бронзу в рейтинге заслуживает тантал, поскольку является одним из самых прочных металлов в мире. Он представляет собой серебристый металл с высокой твердостью и атомной плотностью. Благодаря образованию на его поверхности оксидной пленки, имеет свинцовый оттенок.

Отличительными свойствами тантала являются высокая прочность, тугоплавкость, стойкость к коррозии, воздействию агрессивных сред. Металл является достаточно пластичным металлом и легко поддается механической обработке. Сегодня тантал успешно используется:

  • в химической промышленности;
  • при сооружении ядерных реакторов;
  • в металлургическом производстве;
  • при создании жаропрочных сплавов.

2.

Вторую строчку рейтинга самых прочных металлов в мире занимает рутений – серебристый металл, принадлежащий к платиновой группе. Его особенностью является наличие в составе мышечной ткани живых организмов. Ценными свойствами рутения являются высокая прочность, твердость, тугоплавкость, химическая стойкость, способность образовывать комплексные соединения. Рутений считается катализатором многих химических реакций, выступает в роли материала для изготовления электродов, контактов, острых наконечников.

1.

Рейтинг самых прочных металлов в мире возглавляет именно иридий – серебристо-белый, твердый и тугоплавкий металл, который относится к платиновой группе. В природе высокопрочный элемент встречается крайне редко, и часто входит в соединение с осмием. Из-за своей природной твердости он плохо поддается механической обработке и обладает высокой стойкостью к воздействию химический веществ. Иридий с большим трудом реагирует на воздействие галогенов и перекиси натрия.

Этот металл играет важную роль в повседневной жизни. Его добавляют к титану, хрому и вольфраму для улучшения стойкости к кислым средам, применяют при изготовлении канцелярских принадлежностей, используют в ювелирном деле для создания ювелирных изделий. Стоимость иридия остается высокой из-за ограниченного присутствия в природе.

Обновлено: 05.11.2019 14:38:43

Эксперт: Залман Ривлин


*Обзор лучших по мнению редакции сайт. О критериях отбора. Данный материал носит субъективный характер, не является рекламой и не служит руководством к покупке. Перед покупкой необходима консультация со специалистом.

Наша планета богата ценными ресурсами, но есть и такие, количество которых измеряется крохами. Как ни странно, эти элементы – одни из самых востребованных в мире. В их числе и тяжелые металлы. Только представьте, 8-сантиметровый кубик тяжелейшего металла в мире весит целых 12 кг (!). Сегодня речь пойдет именно о «тяжеловесах» в мире металлов.

Топ-10 самых тяжелых по плотности металлов

Номинация место Металл Плотность
Топ-10 самых тяжелых по плотности металлов 1 16,64 г/см3
2 18,92 г/см3
3 19,21 г/см3
4 19,85 г/см3
5 19,85 г/см3
6 20,48 г/см3
7 21,01 г/см3
8 21,44 г/см3
9 22,53 г/см3
10 22,62 г/см3

Плотность: 16,64 г/см 3

Температура плавления/кипения: 3017 0 С/5458 0 С

Очень редкий металл, но далеко не самый тяжелый в мире. В естественных условиях представляет собой серебристо-белое твердое вещество с легким синеватым оттенком (оксидная пленка). Был обнаружен в далеком 1802 году, но сразу выделить его не удалось: до 1844-го его отождествляли с другим металлом – ниобием.

Тантал – один из самых тугоплавких в мире (по этому показателю он превосходит даже самый тяжелый металл планеты) и не вступает в реакцию с воздухом: окисление его поверхности наступает только при повышении температуры воздуха до 280 0 С, что в естественных условиях невозможно.

Одной из интересных особенностей тантала считается его парамагнетизм (при попадании в магнитное поле металл намагничивается в направлении этого поля). Кроме того, тантал поражает своей устойчивостью к воздействию агрессивных сред: его поверхность не «поддается» даже 70%-ной азотной кислоте. Применяется этот необычный металл в военной отрасли (при создании боеприпасов), медицине (при производстве протезов), в атомной промышленности (при создании ядерных реакторов) и пр.

Интересный факт: несмотря на высокую прочность, тантал очень пластичен (его можно сопоставить с золотом), поэтому чистый металл очень удобен в работе.

Плотность: 18,92 г/см 3

Температура плавления/кипения: 1132 0 С /3745 0 С

Главное и не лучшим образом характеризующее этот твердый металл отличие от других представителей рейтинга – его радиоактивность. Уран, будучи в естественных условиях, проходит долгий этап трансформации, состоящий из 14 этапов и завершающийся его преобразованием в свинец. Правда, процесс этот длится миллиарды лет.

В чистом виде уран обладает большим весом, серебристо-белым цветом, высокой пластичностью (он чуть мягче стали) и слабовыраженными парамагнитными свойствами. Уран легко окисляется при контакте с воздухом, а порошкообразное вещество самовоспламеняется при температуре около 150 0 С.

Основное и явное применение урана – ядерная промышленность. Активным «потребителем» металла считается ядерная энергетика (производство реакторов, силовых установок и пр.). В последние годы особую ставку начали делать на разработку методов добычи урана из морской воды, где концентрация твердого вещества – 3 мкг/л).

Плотность: 19,21 г/см 3

Температура плавления/кипения: 3422 0 С /3745 0 С

Свое довольно оригинальное название (в переводе с лат. – «волчья пена») получил оттого, что при сопровождении оловянной руды мешал выплавке олова, превращая его в пену шлака. То есть фактически пожирал как волк овцу.

Вольфрам представляет собой блестящее твердое вещество светло-серого цвета. Это – самый тугоплавкий металл на планете: температура его плавления близка к солнечной фотосфере. Кроме того, имеет самую высокую доказанную температуру кипения на планете. Правда, недавно появился «конкурент» – сиборгий с более высокой (предполагаемой) температурой плавления, но достоверно это пока неизвестно ввиду небольшой длительности существования металла.

В свое время вольфрам произвел настоящий фурор в промышленности и сегодня его используют как обязательную основу для жаропрочных сплавов. Кроме того, высокая прочность обеспечивает этому металлу широкое применение в различных сферах человеческой деятельности: его используют в авиационных двигателях, нитях накаливания, электровакуумном оборудовании и пр.

Плотность: 19,85 г/см 3

Температура плавления/кипения: 1064 0 С /2856 0 С

Один из самых твердых металлов на земле, но при этом отличающийся невероятной пластичностью: из него можно сделать лист толщиной всего 0,1 мкм (так называемое сусальное золото). Именно по этой причине благородный желтый металл нашел достойное место в ювелирном деле. Но при этом золото имеет высокую плотность, что значительно упрощает процесс его добычи.

Золото обладает очень высоким показателям электропроводимости, что могло бы сделать этот металл незаменимым в процессе создания микросхем, но – увы: стоимость исходного сырья весьма велика, а распространенность – мала.

Золото не вступает в реакцию с кислородом и большинством элементов. Металл не поддается воздействию кислот и щелочей (исключение – царская водка, которая служит для проверки чистоты металлов). Золото – один из немногих металлов, используемых не только в промышленности, но и на благо человеку (его активно применяют в гомеопатии, стоматологии). Кроме того, благородный металл нашел активное применение в банковском деле: он до сих пор является гарантом стабильности любой валюты и надежным инвестиционным инструментом.

Плотность: 19,85 г/см 3

«Младший брат» урана и обладатель высокой радиоактивности. В естественных условиях добывают, но мало и редко, поскольку это попросту нецелесообразно, зато его легко получить в процессе многоступенчатого преобразования урана. Стал первым химически искусственным веществом, производим в промышленных масштабах.

Для получения плутония используется уран обогащенного и природного типа. Несколько лет назад сообщалось о закрытии в 2010 году последнего в мире реактора, производящего плутоний (в России). Но в тот же год в Японии запустили ядерный реактор. Правда, долго проработать ему не пришлось по причине произошедшей через пару месяцев после запуска аварии: реактор остановили, а после трагедии на Фукусима-1 и вовсе передумали запускать. В 2016 было принято решение об утилизации реактора.

Из-за очевидного военного потенциала плутоний стали активно использовать при производстве ядерного оружия (так называемый оружейный плутоний), как источник энергии для космических кораблей и в качестве топлива для ядерных реакторов.

Плотность: 20,48 г/см 3

Температура плавления/кипения: 640 0 С /3235 0 С

Еще одно радиоактивное «детище» урана, полученное в ходе проведения ядерных реакций. Считается первым трансурановым элементом. Относительно мягкое вещество отличается хорошей ковкостью, медленно вступает в реакцию с воздухом, быстро окисляясь при высокой его температуре. На земле этот металл встречается в следовом количестве, поэтому его добыча в естественных условиях попросту бессмысленна.

Нептуний опасен для человека при радиоактивном распаде: около 70-80% его частиц оседает в костной ткани, что приводит к полному ее поражению (степень поражения зависит от валентности изотопов). Основное его применение – получение плутония.

Плотность: 21,01 г/см 3

Температура плавления/кипения: 3186 0 С /5596 0 С

Обнаружение плотного металла серебристого цвета было предсказано Менделеевым в далеком 1871 году, а фактическое его открытие произошло лишь спустя полтора столетия (в 1925-м). Рений стал последним среди открытых элементов со стабильным изотопом: все открытые позднее таковых не имели.

Рений – один из самых редких элементов нашей планеты. По своим геохимическим свойствам похож на вольфрам. Серебристо-белый металл считается одним из самых твердых и плотных среди всех существующих. В чистом виде рений пластичен уже при комнатной температуре, но при этом полностью сохраняет свою прочность даже при многократном нагреве или охлаждении.

Рений труднодоступен, а его получение весьма материалозатратно, поэтому металл является одним из самых дорогих: цена за 1 кг колеблется от 1000 до 10000 долларов. «Добыча» рения происходит преимущественно в процессе переработки молибденового и медного сырья.

Сфера применения рения обусловлена рядом его свойств (тугоплавкостью, устойчивостью к большинству реагентов и пр.). При этом учитывается его дороговизна: применение металла ограничено теми случаями, когда он дает преимущество перед использованием других. В основном, рений применяют при производстве ракетных деталей (в особенности, реактивных и ракетных двигателей).

Плотность: 21,44 г/см 3

Температура плавления/кипения: 1768 0 С /3825 0 С

«Выносливая» и твердая платина практически достигла вершины нашего рейтинга, что неудивительно: это один из самых тяжелых металлов в мире. Драгоценное вещество считается также одним из редчайших на планете. Кстати, даже так называемый самородный металл нельзя считать чистым: в нем содержится до 20% железа, а также родий, иридий, осмий, реже – медь.

Платина считается одним из самых инертных металлов, не вступающим в реакцию с кислотами и щелочами. Блестящий серебристый металл активно применяют в ювелирном и стекольном деле, медицине (хирургии), химической промышленности, автомобилестроении, а благодаря устойчивости к вакууму – еще и при создании космических аппаратов.

Интересный факт: преимущественная часть платиновых запасов мира «спрятана» в недрах всего лишь 5 стран – России, Китая, Зимбабве, ЮАР и США.

Плотность: 22,53 г/см 3

Фактически иридий делит первое место с осмием – разница в плотности этих веществ – сотые доли грамма. Тем не менее этот «тяжеловес», все же, на эту самую малость легче. Это – очень редкий, ценный металл, абсолютно не взаимодействующий с кислотами, водой и даже воздухом. Иридий (как и лидер рейтинга самых тяжелых металлов) – тугоплавкое вещество, плохо поддающееся обработке.

В переводе с греческого означает «радуга», что неудивительно, ведь иридиевые соли отличаются невероятной цветовой гаммой: от медно-красного до ярко-синего. Белый с легким серебристым, словно зеркальным оттенком иридий считается самым прочным и одним из редчайших на планете: за год добывается не более 10 тонн, причем большинство месторождений расположены в месте падения метеоритов.

Применяется в высокоточном машиностроении в качестве индикатора герметичности сварочных швов. Активно используется палеонтологами и геологами в качестве временного индикатора обнаруженного слоя той или иной породы. Нередко один из самых тяжелых металлов на планете применяют и для получения электроэнергии. В последние годы иридий получил довольно неожиданное и необычное применение: для электростимуляции нервов и при создании протезов глазного и ушного аппарата человека.

Плотность: 22,62 г/см 3

Температура плавления/кипения: 2466 0 С/4428 0 С

Самый тяжелый «представитель» периодической таблицы Менделеева, и, соответственно, самый тяжелый в мире металл. Год 1803-й стал для этого элемента фактически поворотным, поскольку в этот период времени его открытие происходило буквально в гоночных условиях: два ученых параллельно открыли осмий – Теннант и де Фуркруа. Но Теннант, все же, добился более четких и глубоких результатов, и в официальных документах, поданных королевскому обществу Лондона, указал, что найденный элемент условно делится на два металла – иридий и осмий.

Добыча осмия требует немалых затрат, поскольку он редкий и сложно поддающийся воздействию. Отсюда и внушительная стоимость – 15000 долларов за 1 грамм вещества. Плотность осмия лишь чуть-чуть превышает аналогичный показатель иридия, хотя свойства обоих видов пока не до конца изучены. Самый тяжелый металл в мире «недружелюбен» к высоким температурам: он очень тугоплавкий.

Осмий входит в группу платиновых элементов и условно благородный. И, хотя при застывании осмий образует красивые серебристо-голубые кристаллы, для создания ювелирных изделий он не подходит, поскольку абсолютно непластичен и плохо поддается ковке. Отличается специфическим запахом – чесночно-хлорная смесь.

Высоко ценится из-за своей прочности: металл часто добавляют в состав для изготовления узлов, подвергающихся частому и сильному трению. Такие сплавы становятся невероятно прочными и устойчивыми к любому воздействию.