Сечение параллельное оси конуса. Сечение конуса плоскостью параллельной образующей развертка. Сечение поверхности конуса плоскостью общего положения. Определение промежуточных точек и построение проекций эллипса

Цель: найти натуральную величину сечения прямого кругового конуса методом замены плоскостей.

Контрольные вопросы:

1. Перечислите виды сечения кругового конуса?

Задание: методом замены плоскостей проекций найти натуральную величину сечения прямого кругового конуса фронтально-проецирующей плоскостью; объекты заданы проекциями на горизонтальную и фронтальную плоскость (варианты заданий приведены в приложении В).

Решим задачу с помощью однократной замены плоскостей проекций. Фигура сечения представляет собой эллипс, который изображается на фронтальной плоскости проекций отрезком прямой, а на горизонтальной плоскости проекций - эллипсом.

Исходные данные для решения задачи приведены на рисунке 7.1.

Заметим, что фронтальная проекция сечения задается отрезком 1 2 – 2 2 и ее длина определяет длину одной из осей искомого эллипса. Построим проекцию осевой линии на плоскость П 5 и найдем проекцию оси 1-2 на эту плоскость и на горизонтальную плоскость (рис. 7.2).

Вторая ось эллипса представляет собой фронтально-проецирующий горизонтальный отрезок, его фронтальная проекция представляет собой точку в середине отрезка 1 2 – 2 2 . Для определения длины этой оси проведем через эту точку вспомогательную фронтально-проецирующую горизонтальную плоскость Σ. Плоскость Σ пересекает конус по окружности, на рисунке 7.3 показано, как определить ее радиус и построить горизонтальную проекцию. Вторая ось эллипса лежит в плоскости этой окружности и касается поверхности конуса в точках 3 и 4. На рисунке 7.4 показано отыскание горизонтальных проекций этих точек. Отрезок 3 2 – 4 2 определяет длину второй оси эллипса.

Построим проекцию оси 3-4 на плоскость П 5 , для этого, как и в предыдущих лабораторных работах, применим команду ALIGN. Результат приведен на рисунке 7.5. Для наглядности горизонтальная проекция оси восстановлена.

На рисунке 7.6 показан результат построения натуральной величины сечения в виде эллипса, заданного осями 1 5 – 2 5 и 3 5 – 4 5 . На этом же рисунке построена горизонтальная проекция сечения, это тоже эллипс, заданный осями 1 1 – 2 1 и 3 1 – 4 1 .

Трехмерная модель сечения приведена на рисунке 7.7.

Рисунок 7.7 – Трехмерная модель сечения

Если секущая плоскость пересекает основание конуса, следует продлить коническую поверхность так, чтобы плоскость пересекала все образующие. Это даст возможность построить сечение в виде эллипса и высечь из него эллиптическую дугу, представляющую сечение заданного конуса (рис. 7.8). Это можно сделать с помощью команды TRIM, воспользовавшись в качестве секущих кромок отрезками 5 5 – 6 5 (для натуральной величины сечения) и 5 1 – 6 1 (для горизонтальной проекции сечения).

Рисунок 7.8 – Сечение в виде эллиптической дуги

Трехмерная модель для этого случая приведена на рисунке 7.9.

Рисунок 7.9 – Трехмерная модель сечения в виде эллиптической дуги

Лабораторная работа №8

Сечение конуса плоскостью

Учитывая зависимость отположения секущей плоскости в сечении конуса вращения могут получиться различные линии, называемые линиями конических сечений.

В случае если секущая плоскость проходит через вершину конуса, в его сечении получается пара прямых – образующих (треугольник). В результате пересечения конуса плоскостью, перпендикулярной к оси конуса, получается окружность. В случае если секущая плоскость наклонена к оси вращения конуса и не проходит через ее вершину, в сечении конуса могут получиться эллипс (секущая плоскость пересекает всœе образующие конуса); парабола (секущая плоскость параллельна одной из образующих конуса) или гипербола (в данном случае секущая плоскость параллельна двум образующим конуса) исходя из угла наклона секущей плоскости (рис.39).

Рис. 39

Известно, что точка принадлежит поверхности, в случае если она принадлежит какой-либо линии этой поверхности. Для конуса графически наиболее простыми линиями являются образующие и окружности. Следовательно, в случае если по условию задачи требуется найти горизонтальные проекции точек, принадлежащих поверхности конуса, то нужно через точки провести одну из этих линий.

На рисунке 40 дан пример построения проекций линии сечения конуса фронтально проецирующей плоскостью, когда в сечении получается эллипс.

Для построения кривой линии, получаемой при пересечении конической поверхности плоскостью, в общем случае находят точки пересечения образующих конической поверхности с секущей плоскостью. Для этого можно поделить основание конуса на равное число частей (обычно 12), провести горизонтальные проекции образующих s1,s2,.... s12 и строят их фронтальные проекции. На фронтальной проекции отмечают фронтальные проекции точек пересечения построенных образующих с фронтальным следом секущей плоскости Q. Горизонтальные проекции строят в проекционной связи на соответствующих проекциях образующих. Профильная проекция линии сечения конуса плоскость Q построена по фронтальной и горизонтальной проекциям точек в проекционной связи.

При пересечении прямого кругового конуса с плоскостью могут образовываться следующие кривые второго порядка: окружность, эллипс, гипербола и парабола. Вид этих кривых зависит от угла наклона секущей плоскости к оси конической поверхности.

Ниже мы рассмотрим задачу, в которой требуется построить проекции и натуральную величину сечения конуса ω плоскостью α . Начальные данные представлены на рисунке ниже.

Определение высшей и низшей точки сечения. Границы видимости

Построение линии пересечения следует начинать с нахождения её характерных точек. Они определяют границы сечения и его видимость по отношению к наблюдателю.

Через ось конической поверхности проведем вспомогательную плоскость γ, параллельную П 2 . Она пересекает конус ω по двум образующим, а плоскость α по фронтали f γ . Точки 1 и 2 пересечения f γ с образующими являются граничными точками. Они делят сечение на видимую и невидимую части.

Определим высшую и низшую точки линии пересечения. Для этого через ось конуса перпендикулярно h 0 α введем дополнительную секущую плоскость β. Она пересекает коническую поверхность по образующим SL и SK, а плоскость α по прямой MN. Искомые точки 3 = SL ∩ MN и 4 = SK ∩ MN определяют большую ось эллипса. Его центр находится в точке O, которая делит отрезок 3–4 пополам.

Определение промежуточных точек и построение проекций эллипса

Чтобы построить проекции сечения наиболее точно, найдем ряд дополнительных точек. В случае с эллипсом целесообразно определить величину его малого диаметра. Для этого через центр O проводим вспомогательную горизонтальную плоскость δ. Она пересекает коническую поверхность по окружности диаметром AB, а плоскость α – по горизонтали h δ . Строим горизонтальные проекции окружности и прямой h δ . Их пересечение определяет точки 5" и 6" малого диаметра эллипса.

Для построения промежуточных точек 7 и 8 вводим вспомогательную горизонтальную плоскость ε. Проекции 7" и 8" определяются аналогично 5" и 6", как это показано на рисунке.

Соединив найденные точки плавной кривой, мы получили контур эллиптического сечения. На рисунке он обозначен красным цветом. Фронтальная проекция контура меняет свою видимость в точках 1 и 2, как это было отмечено выше.

Чтобы найти натуральную величину сечения, повернем плоскость α до совмещения её с горизонтальной плоскостью. В качестве оси вращения будем использовать след h 0 α . Его положение в процессе преобразований останется неизменным.

Построение начинается с определения направления фронтального следа f 1 α . На прямой f 0 α возьмем произвольную точку E и определим её проекцию E". Из E" опустим перпендикуляр к h 0 α . Пересечение данного перпендикуляра с окружностью радиусом X α E"" определяет положение точки E" 1 . Через X α и E" 1 проводим f 1 α .

Строим проекцию горизонтали h" 1 δ ∥ h 0 α , как это показано на рисунке. Точки O" 1 и 5" 1 , 6" 1 лежат на пересечении h" 1 δ с прямыми, проведенными перпендикулярно h 0 α из O" и 5", 6". Аналогично на горизонтали h" 1 ε находим 7" 1 и 8" 1 .

Строим проекции фронталей f" 1 γ ∥ f 1 α , f" 3 ∥ f 1 α и f" 4 ∥ f 1 α . Точки 1" 1 , 2" 1 , 3" 1 и 4" 1 лежат на пересечении этих фронталей с перпендикулярами, восстановленными к h 0α из 1", 2", 3" и 4" соответственно.

90 ° .

2. Что представляет собой сечение цилиндра плоскостью, параллельной его образующей?

Сечение - прямоугольник.

3. На основаниях цилиндра взяты две не параллельные друг другу хорды. Может ли кратчайшее расстояние между точками этих хорд быть: а) равным высоте цилиндра; б) больше высоты цилиндра; в) меньше высоты цилиндра?

АВ и CD лежат в параллельных плоскостях.

Н - высота цилиндра.

4. Две цилиндрические детали покрываются слоем никеля одинаковой толщины. Высота первой детали в два раза больше высоты второй, но радиус ее основания в два раза меньше радиуса основания второй детали. На какую из деталей расходуется больше никеля?

Первая деталь Вторая деталь

2l , l - высота (образующая),

r/2, r - радиус основания,


Боковые поверхности равны, но площадь двух оснований второй детали больше площади двух оснований первой детали.

5. Равны ли друг другу углы между образующими конуса и: а) плоскостью основания; б) его осью?


а) да; б) да.

6. Что представляет собой сечение конуса плоскостью, проходящей через его вершину?

Равнобедренный треугольник.

7. Точки А и В принадлежат шару. Принадлежит ли этому шару любая точка отрезка АВ?

8. Могут ли все вершины прямоугольного треугольника с катетами 4 см и 2 √2 см лежать на сфере радиуса √5 см?

Вычислим гипотенузу прямоугольного треугольника:


Гипотенуза не помещается внутри сферы, тогда, хотя бы одна вершина лежит вне сферы.

9. Могут ли две сферы с общим центром и с неравными радиусами иметь общую касательную плоскость?

Одна сфера всегда будет внутри другой, поэтому общую касательную плоскость провести невозможно.

10. Что представляет собой множество всех точек пространства, из которых данный отрезок виден под прямым углом?

Это сфера, у которой данный отрезок является диаметром.

В сечении конической поверхности плоскостью получаются кривые второго порядка - окружность, эллипс, парабола и гипербола. В частом случае при определенном расположении секущей плоскости и когда она проходит через вершину конуса (S∈γ), окружность и эллипс вырождаются в точку или в сечении попадает одна или две образующих конуса.

Дает - окружность, когда секущая плоскость перпендикулярна к его оси и пересекает все образующие поверхности.

Дает - эллипс, когда секущая плоскость не перпендикулярна к его оси и пересекает все образующие поверхности.

Построим эллиптическое ω плоскостью α , занимающей общее положение.

Решение задачи на сечение прямого кругового конуса плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость α из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости α и проекцию поверхности конуса ω плоскостью дает эллипс, так как секущая плоскость пересекает все образующие конуса. Эллипс проецируется на плоскости проекций в виде кривой второго порядка.
На следе плоскости α V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след αV 1 . Линия сечения конуса ω - точки A" 1 , E" 1 совпадает здесь со следом плоскости. Далее построим вспомогательную секущию плоскость γ3, проведя на фронтальной плоскости проекций V 1 ее след γ 3V 1 . Вспомогательная плоскость пересекаясь с конической поверхностью ω даст окружность, а пересекаясь с плоскостью α даст горизонтальную прямую h3. В свою очередь прямая пересекаясь с окружностью дает искомые точки C`и K` пересечения плоскости α c конической поверхностью ω . Фронтальные проекции искомых точек C" и K" построим как точки принадлежащие секущей плоскости α .

Для нахождения точки E(E`, E") линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 2 H , которая пересечет плоскость α по прямой 1-2(1`-2`, 1"-2") . Пересечение 1"-2" с линией связи дает точку E" - наивысшую точку линии сечения.

Для нахождения точки указывающей границы видимости фронтальной проекции линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 5 H и находим горизонтальную проекцию F` искомой точки. Также, плоскость γ 5 H пересечет плоскость α по фронтали f(f`, f") . Пересечение f" с линией связи дает точку F" . Соединяем полученные на горизонтальной проекции точки плавной кривой, отметив на ней крайнюю левую точку G - одну из характерных точек линии пересечения.
Затем, строим проекции G на фронтальных плоскостях проекций V1 и V. Все построенные точки линии сечения на фронтальной плоскости проекций V соединяем плавной линией.

Дает - параболу, когда секущая плоскость параллельна одной образующей конуса.

При построении проекций кривых - конических сечений необходимо помнить о теореме: ортогональная проекция плоского сечения конуса вращения на плоскость, перпендикулярную к его оси, есть кривая второго порядка и имеет одним из своих фокусов ортогональную проекцию на эту плоскость вершины конуса.

Рассмотрим построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса (SD) .

В сечении получится парабола с вершиной в точке A(A`, A") . Согласно теореме вершина конуса S проецируется в фокус S` . По известному =R S` определяем положение директрисы параболы. В последующем точки кривой строятся по уравнению p=R .

Построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса, может быть выполнено:

С помощью вспомогательных горизонтально-проецирующих плоскостей проходящих через вершину конуса γ 1 H и γ 2 H .

Сначала определятся фронтальные проекции точек F", G" - на пересечении образующих S"1", S"2" и следа секущей плоскости α V . На пересечении линий связи с γ 1 H и γ 2 H определяться F`, G` .

Аналогично могут быть определены и другие точки линии сечения, например D", E" и D`, E` .

С помощью вспомогательных фронтально-проецирующих плоскостей ⊥ оси конуса γ 3 V и γ 4 V .

Проекциями сечения вспомогательных плоскостей и конуса на плоскость H , будут окружности. Линиями пересечения вспомогательных плоскостей с секущей плоскостью α будут фронтально- проецирующие прямые.

Дает - гиперболу, когда секущая плоскость параллельна двум образующим конуса.